[ad_1]
Alvarez-Martinez, C. E. & Christie, P. J. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73, 775–808 (2009).
Cascales, E. & Christie, P. J. The versatile bacterial type IV secretion systems. Nat. Rev. Microbiol. 1, 137–149 (2003).
Costa, T. R. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359 (2015).
Christie, P. J. The mosaic type IV secretion systems. EcoSal Plus https://doi.org/10.1128/ecosalplus.ESP-0020-2015 (2016).
Waksman, G. From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective. EMBO Rep. 20, e47012 (2019).
Cabezon, E., de la Cruz, F. & Arechaga, I. Conjugation inhibitors and their potential use to prevent dissemination of antibiotic resistance genes in bacteria. Front. Microbiol. 8, 2329 (2017).
Boudaher, E. & Shaffer, C. L. Inhibiting bacterial secretion systems in the fight against antibiotic resistance. MedChemComm 10, 682–692 (2019).
Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S. & Cascales, E. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59, 451–485 (2005).
Cabezón, E., Ripoll-Rozada, J., Peña, A., de la Cruz, F. & Arechaga, I. Towards an integrated model of bacterial conjugation. FEMS Microbiol. Rev. 39, 81–95 (2015).
Costa, T. R. D. et al. Type IV secretion systems: advances in structure, function, and activation. Mol. Microbiol. 115, 436–452 (2021).
Sheedlo, M. J., Ohi, M. D., Lacy, D. B. & Cover, T. L. Molecular architecture of bacterial type IV secretion systems. PLoS Pathog. 18, e1010720 (2022).
Sgro, G. G. et al. Bacteria-killing type IV secretion systems. Front. Microbiol. 10, 1078 (2019).
Gonzalez-Rivera, C., Bhatty, M. & Christie, P. J. Mechanism and function of type IV secretion during infection of the human host. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0024-2015 (2016).
Macé, K. et al. Cryo-EM structure of a type IV secretion system. Nature 607, 191–196 (2022). The study reports high-resolution atomic structure of a nearly complete T4SS, representing a significant leap forward in the understanding of type IV secretion, as it reveals crucial details of assembly, function and subunit interfaces, opening new possibilities for rational drug design and establishing a workflow for structural determination of these complex machineries.
Amin, H., Ilangovan, A. & Costa, T. R. D. Architecture of the outer-membrane core complex from a conjugative type IV secretion system. Nat. Commun. 12, 6834 (2021). The study presents the high-resolution structure of the outer membrane core complex from an expanded conjugative T4SS, shedding light on the mechanisms of conjugative pilus outgrowth and DNA translocation during bacterial conjugation, revealing structural adaptations that contribute to the dynamic properties of the machinery.
Chandran, V. et al. Structure of the outer membrane complex of a type IV secretion system. Nature 462, 1011–1015 (2009).
Fronzes, R. et al. Structure of a type IV secretion system core complex. Science 323, 266–268 (2009).
Rivera-Calzada, A. et al. Structure of a bacterial type IV secretion core complex at subnanometre resolution. EMBO J. 32, 1195–1204 (2013).
Low, H. H. et al. Structure of a type IV secretion system. Nature 508, 550–553 (2014).
Gordon, J. E. et al. Use of chimeric type IV secretion systems to define contributions of outer membrane subassemblies for contact-dependent translocation. Mol. Microbiol. 105, 273–293 (2017).
Sgro, G. G. et al. Cryo-EM structure of the bacteria-killing type IV secretion system core complex from Xanthomonas citri. Nat. Microbiol. 3, 1429–1440 (2018). The paper reports the high-resolution cryo-EM structure of a T4SS involved in bacterial killing, advancing our understanding of the structural similarities and differences among functionally distinct T4SSs.
Cascales, E., Atmakuri, K., Sarkar, M. K. & Christie, P. J. DNA substrate-induced activation of the Agrobacterium VirB/VirD4 type IV secretion system. J. Bacteriol. 195, 2691–2704 (2013).
Cascales, E. & Christie, P. J. Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc. Natl Acad. Sci. USA 101, 17228–17233 (2004).
Banta, L. M. et al. An Agrobacterium VirB10 mutation conferring a type IV secretion system gating defect. J. Bacteriol. 193, 2566–2574 (2011).
Darbari, V. C. et al. Electrostatic switching controls channel dynamics of the sensor protein VirB10 in A. tumefaciens type IV secretion system. ACS Omega 5, 3271–3281 (2020).
Souza, D. P. et al. A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins. PLoS Pathog. 7, e1002031 (2011).
Nakano, N., Kubori, T., Kinoshita, M., Imada, K. & Nagai, H. Crystal structure of Legionella DotD: insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog. 6, e1001129 (2010).
Lockwood, D. C., Amin, H., Costa, T. R. D. & Schroeder, G. N. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. Microbiology https://doi.org/10.1099/mic.0.001187 (2022).
Aly, K. A. & Baron, C. The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology 153, 3766–3775 (2007).
Jakubowski, S. J., Krishnamoorthy, V., Cascales, E. & Christie, P. J. Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J. Mol. Biol. 341, 961–977 (2004).
Hospenthal, M. K., Costa, T. R. D. & Waksman, G. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat. Rev. Microbiol. 15, 365–379 (2017).
Backert, S., Fronzes, R. & Waksman, G. VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol. 16, 409–413 (2008).
Bönig, T., Olbermann, P., Bats, S. H., Fischer, W. & Josenhans, C. Systematic site-directed mutagenesis of the Helicobacter pylori CagL protein of the Cag type IV secretion system identifies novel functional domains. Sci. Rep. 6, 38101 (2016).
Pham, K. T. et al. CagI is an essential component of the Helicobacter pylori Cag type IV secretion system and forms a complex with CagL. PLoS ONE 7, e35341 (2012).
Khara, P., Song, L., Christie, P. J. & Hu, B. In situ visualization of the pKM101-encoded type IV secretion system reveals a highly symmetric ATPase energy center. mBio 12, e0246521 (2021).
Liu, X., Khara, P., Baker, M. L., Christie, P. J. & Hu, B. Structure of a type IV secretion system core complex encoded by multi-drug resistance F plasmids. Nat. Commun. 13, 379 (2022).
Kitao, T., Kubori, T. & Nagai, H. Recent advances in structural studies of the Legionella pneumophila Dot/Icm type IV secretion system. Microbiol. Immunol. 66, 67–74 (2022).
Gomez-Valero, L. et al. More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc. Natl Acad. Sci. USA 116, 2265–2273 (2019).
Asrat, S., de Jesus, D. A., Hempstead, A. D., Ramabhadran, V. & Isberg, R. R. Bacterial pathogen manipulation of host membrane trafficking. Annu. Rev. Cell Dev. Biol. 30, 79–109 (2014).
Durie, C. L. et al. Structural analysis of the Legionella pneumophila Dot/Icm type IV secretion system core complex. eLife 9, e59530 (2020). This study reports high-resolution structure of the L. pneumophila Dot/Icm T4SS, which plays a crucial role in niche establishment and the pathogenesis of Legionnaire’s disease.
Sheedlo, M. J. et al. Cryo-EM reveals new species-specific proteins and symmetry elements in the Legionella pneumophila Dot/Icm T4SS. eLife 10, e70427 (2021).
Varga, M. G. et al. Pathogenic Helicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated Cag type IV secretion system. Oncogene 35, 6262–6269 (2016).
Tegtmeyer, N., Neddermann, M., Asche, C. I. & Backert, S. Subversion of host kinases: a key network in cellular signaling hijacked by Helicobacter pylori CagA. Mol. Microbiol. 105, 358–372 (2017).
Pfannkuch, L. et al. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori. FASEB J. 33, 9087–9099 (2019).
Cover, T. L., Lacy, D. B. & Ohi, M. D. The Helicobacter pylori Cag type IV secretion system. Trends Microbiol. 28, 682–695 (2020).
Frick-Cheng, A. E. et al. Molecular and structural analysis of the Helicobacter pylori Cag type IV secretion system core complex. mBio 7, e02001–e02015 (2016).
Sheedlo, M. J. et al. Cryo-EM reveals species-specific components within the Helicobacter pylori Cag type IV secretion system core complex. eLife 9, e59495 (2020).
Hu, B., Khara, P. & Christie, P. J. Structural bases for F plasmid conjugation and F pilus biogenesis in Escherichia coli. Proc. Natl Acad. Sci. USA 116, 14222–14227 (2019). The study presents in situ cryo-electron tomography visualization of the entire conjugative F T4SS, revealing four distinct conformational states of the machinery, and providing a step-by-step mechanism of bacterial conjugation and pilus outgrowth, along with architectural representations of the machinery in each state.
Ghosal, D., Chang, Y. W., Jeong, K. C., Vogel, J. P. & Jensen, G. J. In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography. EMBO Rep. 18, 726–732 (2017). The study reports cryo-electron tomography visualization of the Dot/Icm T4SS in L. pneumophila, revealing a common overall architecture shared across functionally diverse T4SSs.
Chetrit, D., Hu, B., Christie, P. J., Roy, C. R. & Liu, J. A unique cytoplasmic ATPase complex defines the Legionella pneumophila type IV secretion channel. Nat. Microbiol. 3, 678–686 (2018).
Park, D., Steiner, S., Shao, M., Roy, C. R. & Liu, J. Developmental transitions coordinate assembly of the Coxiella burnetii Dot/Icm type IV secretion system. Infect. Immun. 90, e0041022 (2022).
Newton, H. J., McDonough, J. A. & Roy, C. R. Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole. PLoS ONE 8, e54566 (2013).
Chang, Y. W., Shaffer, C. L., Rettberg, L. A., Ghosal, D. & Jensen, G. J. In vivo structures of the Helicobacter pylori Cag type IV secretion system. Cell Rep. 23, 673–681 (2018).
Hu, B. et al. In situ molecular architecture of the Helicobacter pylori Cag type IV secretion system. mBio https://doi.org/10.1128/mBio.00849-19 (2019).
Chung, J. M. et al. Structure of the Helicobacter pylori Cag type IV secretion system. eLife 8, e47644 (2019). The paper presents the high-resolution structure of the H. pylori Cag T4SS, which is required for H. pylori infection of the human gastrointestinal tract.
Tegtmeyer, N. et al. Toll-like receptor 5 activation by the CagY repeat domains of Helicobacter pylori. Cell Rep. 32, 108159 (2020).
Audette, G. F., Manchak, J., Beatty, P., Klimke, W. A. & Frost, L. S. Entry exclusion in F-like plasmids requires intact TraG in the donor that recognizes its cognate TraS in the recipient. Microbiology 153, 442–451 (2007).
Marrero, J. & Waldor, M. K. Determinants of entry exclusion within Eex and TraG are cytoplasmic. J. Bacteriol. 189, 6469–6473 (2007).
Gillespie, J. J. et al. An anomalous type IV secretion system in Rickettsia is evolutionarily conserved. PLoS ONE 4, e4833 (2009).
Gillespie, J. J. et al. Phylogenomics reveals a diverse Rickettsiales type IV secretion system. Infect. Immun. 78, 1809–1823 (2010).
Rancès, E., Voronin, D., Tran-Van, V. & Mavingui, P. Genetic and functional characterization of the type IV secretion system in Wolbachia. J. Bacteriol. 190, 5020–5030 (2008).
Nagai, H. & Roy, C. R. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO J. 20, 5962–5970 (2001).
Skoog, E. C. et al. CagY-dependent regulation of type IV secretion in Helicobacter pylori is associated with alterations in integrin binding. mBio 9, e00717–e00718 (2018).
Aras, R. A., Kang, J., Tschumi, A. I., Harasaki, Y. & Blaser, M. J. Extensive repetitive DNA facilitates prokaryotic genome plasticity. Proc. Natl Acad. Sci. USA 100, 13579–13584 (2003).
Barrozo, R. M. et al. Functional plasticity in the type IV secretion system of Helicobacter pylori. PLoS Pathog. 9, e1003189 (2013).
Llosa, M. & Alkorta, I. in Type IV Secretion in Gram-Negative and Gram-Positive Bacteria (eds Backert, S. & Grohmann, E.) 143–168 (Springer International, 2017).
Gomis-Rüth, F. X. et al. The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409, 637–641 (2001).
Whitaker, N. et al. The all-alpha domains of coupling proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-encoded type IV secretion systems confer specificity to binding of cognate DNA substrates. J. Bacteriol. 197, 2335–2349 (2015).
Oka, G. U. et al. Structural basis for effector recognition by an antibacterial type IV secretion system. Proc. Natl Acad. Sci. USA 119, e2112529119 (2022).
Atmakuri, K., Cascales, E. & Christie, P. J. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Mol. Microbiol. 54, 1199–1211 (2004).
Ripoll-Rozada, J., Zunzunegui, S., de la Cruz, F., Arechaga, I. & Cabezon, E. Functional interactions of VirB11 traffic ATPases with VirB4 and VirD4 molecular motors in type IV secretion systems. J. Bacteriol. 195, 4195–4201 (2013).
Savvides, S. N. et al. VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J. 22, 1969–1980 (2003).
Hare, S., Bayliss, R., Baron, C. & Waksman, G. A large domain swap in the VirB11 ATPase of Brucella suis leaves the hexameric assembly intact. J. Mol. Biol. 360, 56–66 (2006).
Park, D., Chetrit, D., Hu, B., Roy, C. R. & Liu, J. Analysis of Dot/Icm type IVB secretion system subassemblies by cryoelectron tomography reveals conformational changes induced by DotB binding. mBio 11, e03328–03319 (2020).
Sagulenko, E., Sagulenko, V., Chen, J. & Christie, P. J. Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. J. Bacteriol. 183, 5813–5825 (2001).
Hilleringmann, M. et al. Inhibitors of Helicobacter pylori ATPase Cagα block CagA transport and Cag virulence. Microbiology 152, 2919–2930 (2006).
Nagai, H. et al. A C-terminal translocation signal required for Dot/Icm-dependent delivery of the Legionella RalF protein to host cells. Proc. Natl Acad. Sci. USA 102, 826–831 (2005).
Cambronne, E. D. & Roy, C. R. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation. PLoS Pathog. 3, e188 (2007).
Kim, H. et al. Structural basis for effector protein recognition by the Dot/Icm type IVB coupling protein complex. Nat. Commun. 11, 2623 (2020).
Jeong, K. C., Sutherland, M. C. & Vogel, J. P. Novel export control of a Legionella Dot/Icm substrate is mediated by dual, independent signal sequences. Mol. Microbiol. 96, 175–188 (2015).
Meir, A., Chetrit, D., Liu, L., Roy, C. R. & Waksman, G. Legionella DotM structure reveals a role in effector recruiting to the type 4B secretion system. Nat. Commun. 9, 507 (2018). The paper presents the crystallographic structure of DotM, revealing a novel mechanism of effector recognition by the Dot/Icm T4SS in L. pneumophila.
Mace, K. et al. Proteins DotY and DotZ modulate the dynamics and localization of the type IVB coupling complex of Legionella pneumophila. Mol. Microbiol. 117, 307–319 (2022).
Meir, A., Macé, K., Vegunta, Y., Williams, S. M. & Waksman, G. Substrate recruitment mechanism by Gram-negative type III, IV, and VI bacterial injectisomes. Trends Microbiol. 31, 916–932 (2023).
Kwak, M. J. et al. Architecture of the type IV coupling protein complex of Legionella pneumophila. Nat. Microbiol. 2, 17114 (2017).
Meir, A. et al. Mechanism of effector capture and delivery by the type IV secretion system from Legionella pneumophila. Nat. Commun. 11, 2864 (2020).
Vincent, C. D., Friedman, J. R., Jeong, K. C., Sutherland, M. C. & Vogel, J. P. Identification of the DotL coupling protein subcomplex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 85, 378–391 (2012).
Xu, J. et al. Structural insights into the roles of the IcmS–IcmW complex in the type IVb secretion system of Legionella pneumophila. Proc. Natl Acad. Sci. USA 114, 13543–13548 (2017).
Pattis, I., Weiss, E., Laugks, R., Haas, R. & Fischer, W. The Helicobacter pylori CagF protein is a type IV secretion chaperone-like molecule that binds close to the C-terminal secretion signal of the CagA effector protein. Microbiology 153, 2896–2909 (2007).
Wu, X. et al. Mechanism of regulation of the Helicobacter pylori Cagβ ATPase by CagZ. Nat. Commun. 14, 479 (2023).
de la Cruz, F., Frost, L. S., Meyer, R. J. & Zechner, E. L. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol. Rev. 34, 18–40 (2010).
Ilangovan, A. et al. Cryo-EM structure of a relaxase reveals the molecular basis of DNA unwinding during bacterial conjugation. Cell 169, 708–721.e12 (2017). The study reveals the structure of the relaxase protein, the core component of the relaxosome complex involved in DNA processing prior to conjugation, showing that two distinct activities of the relaxase, the transesterase activity required for DNA nicking and the helicase activity essential for DNA unwinding, are simultaneously performed by two distinct structural conformers.
Datta, S., Larkin, C. & Schildbach, J. F. Structural insights into single-stranded DNA binding and cleavage by F factor TraI. Structure 11, 1369–1379 (2003).
Rice, P. A., Yang, S., Mizuuchi, K. & Nash, H. A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87, 1295–1306 (1996).
Luo, Y., Gao, Q. & Deonier, R. C. Mutational and physical analysis of F plasmid traY protein binding to oriT. Mol. Microbiol. 11, 459–469 (1994).
Lu, J. et al. Structural basis of specific TraD–TraM recognition during F plasmid-mediated bacterial conjugation. Mol. Microbiol. 70, 89–99 (2008).
Beranek, A. et al. Thirty-eight C-terminal amino acids of the coupling protein traD of the F-like conjugative resistance plasmid R1 are required and sufficient to confer binding to the substrate selector protein TraM. J. Bacteriol. 186, 6999–7006 (2004).
Wong, J. J., Lu, J., Edwards, R. A., Frost, L. S. & Glover, J. M. Structural basis of cooperative DNA recognition by the plasmid conjugation factor, TraM. Nucleic Acids Res. 39, 6775–6788 (2011).
Rêgo, A. T., Chandran, V. & Waksman, G. Two-step and one-step secretion mechanisms in Gram-negative bacteria: contrasting the type IV secretion system and the chaperone-usher pathway of pilus biogenesis. Biochem. J. 425, 475–488 (2010).
Prevost, M. S. & Waksman, G. X-ray crystal structures of the type IVb secretion system DotB ATPases. Protein Sci. 27, 1464–1475 (2018).
Jakubowski, S. J., Cascales, E., Krishnamoorthy, V. & Christie, P. J. Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J. Bacteriol. 187, 3486–3495 (2005).
Redzej, A. et al. Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery. EMBO J. 36, 3080–3095 (2017).
Burns, D. L. Secretion of pertussis toxin from Bordetella pertussis. Toxins 13, 574 (2021).
Dehio, C. & Tsolis, R. M. Type IV effector secretion and subversion of host functions by Bartonella and Brucella species. Curr. Top. Microbiol. Immunol. 413, 269–295 (2017).
Costa, T. R. D. et al. Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166, 1436–1444.e10 (2016). The paper presents the structure of the conjugative F pilus, uncovering the incorporation of phospholipid molecules within the molecular architecture of pilus filament, establishing the basis for structural characterization of conjugative pili and leading to a surge in available architectures of other conjugative pili with their respective phospholipid types.
Zheng, W. et al. Cryoelectron-microscopic structure of the pKpQIL conjugative pili from carbapenem-resistant Klebsiella pneumoniae. Structure 28, 1321–1328.e2 (2020).
Kreida, S. et al. Cryo-EM structure of the Agrobacterium tumefaciens T4SS-associated T-pilus reveals stoichiometric protein-phospholipid assembly. Structure 31, 385–394.e4 (2023).
Amro, J. et al. Cryo-EM structure of the Agrobacterium tumefaciens T-pilus reveals the importance of positive charges in the lumen. Structure 31, 375–384 (2023).
Beltran, L. C. et al. Archaeal DNA-import apparatus is homologous to bacterial conjugation machinery. Nat. Commun. 14, 666 (2023).
Patkowski, J. B. et al. The F-pilus biomechanical adaptability accelerates conjugative dissemination of antimicrobial resistance and biofilm formation. Nat. Commun. 14, 1879 (2023).
Rozwandowicz, M. et al. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 73, 1121–1137 (2018).
Bradley, D. E. Morphological and serological relationships of conjugative pili. Plasmid 4, 155–169 (1980).
Paschos, A. et al. An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation. Infect. Immun. 79, 1033–1043 (2011).
Shaffer, C. L. et al. Peptidomimetic small molecules disrupt type IV secretion system activity in diverse bacterial pathogens. mBio 7, e00221-16 (2016).
Ripoll-Rozada, J. et al. Type IV traffic ATPase TrwD as molecular target to inhibit bacterial conjugation. Mol. Microbiol. 100, 912–921 (2016).
Casu, B., Arya, T., Bessette, B. & Baron, C. Fragment-based screening identifies novel targets for inhibitors of conjugative transfer of antimicrobial resistance by plasmid pKM101. Sci. Rep. 7, 14907 (2017).
Getino, M. & de la Cruz, F. Natural and artificial strategies to control the conjugative transmission of plasmids. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MTBP-0015-2016 (2018).
Garcia-Cazorla, Y. et al. Conjugation inhibitors compete with palmitic acid for binding to the conjugative traffic ATPase TrwD, providing a mechanism to inhibit bacterial conjugation. J. Biol. Chem. 293, 16923–16930 (2018).
Arya, T. et al. Fragment-based screening identifies inhibitors of ATPase activity and of hexamer formation of Cagalpha from the Helicobacter pylori type IV secretion system. Sci. Rep. 9, 6474 (2019).
Alvarez-Rodriguez, I. et al. Type IV coupling proteins as potential targets to control the dissemination of antibiotic resistance. Front. Mol. Biosci. 7, 201 (2020).
Brown, P. J. B., Chang, J. H. & Fuqua, C. Agrobacterium tumefaciens: a transformative agent for fundamental insights into host-microbe interactions, genome biology, chemical signaling, and cell biology. J. Bacteriol. 205, e0000523 (2023).
Hamilton, T. A. et al. Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nat. Commun. 10, 4544 (2019).
Vrancianu, C. O., Popa, L. I., Bleotu, C. & Chifiriuc, M. C. Targeting plasmids to limit acquisition and transmission of antimicrobial resistance. Front. Microbiol. 11, 761 (2020).
Reuter, A. et al. Targeted-antibacterial-plasmids (TAPs) combining conjugation and CRISPR/Cas systems achieve strain-specific antibacterial activity. Nucleic Acids Res. 49, 3584–3598 (2021).
Bier, E. & Nizet, V. Driving to safety: CRISPR-based genetic approaches to reducing antibiotic resistance. Trends Genet. 37, 745–757 (2021).
Robledo, M. et al. Targeted bacterial conjugation mediated by synthetic cell-to-cell adhesions. Nucleic Acids Res. 50, 12938–12950 (2022).
[ad_2]
Source link