Structural and dynamical investigation of histone H2B in well-hydrated nucleosome core particles by solid-state NMR – Communications Biology

[ad_1]

  • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dorigo, B. et al. Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306, 1571–1573 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, P., Li, W. & Li, G. Structures and functions of chromatin fibers. Annu. Rev. Biophys. 50, 95–116 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vasudevan, D., Chua, E. Y. D. & Davey, C. A. Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J. Mol. Biol. 403, 1–10 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hood, L. & Galas, D. The digital code of DNA. Nature 421, 444–448 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Cosgrove, M. S., Boeke, J. D. & Wolberger, C. Regulated nucleosome mobility and the histone code. Nat. Struct. Mol. Biol. 11, 1037–1043 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Overview of histone modification. Adv. Exp. Med. Biol. 1283, 1–16 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henikoff, S. & Smith, M. M. Histone variants and epigenetics. Cold Spring Harb. Perspect. Biol. 7, a019364 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martire, S. & Banaszynski, L. A. The roles of histone variants in fine-tuning chromatin organization and function. Nat. Rev. Mol. Cell Biol. 21, 522–541 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, P. et al. An overview of chromatin-regulating proteins in cells. Curr. Protein Pept. Sci. 17, 401–410 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meier, K. & Brehm, A. Chromatin regulation: how complex does it get? Epigenetics 9, 1485–1495 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, M. D. & Costa, A. Cryo-electron microscopy of chromatin biology. Acta Crystallogr. D. 73, 541–548 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Takizawa, Y. & Kurumizaka, H. Chromatin structure meets cryo-EM: dynamic building blocks of the functional architecture. Biochim. Biophys. Acta Gene. Regul. Mech. 1865, 194851 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soman, A. et al. Columnar structure of human telomeric chromatin. Nature 609, 1048–1055 (2022).

  • Soman, A. et al. The human telomeric nucleosome displays distinct structural and dynamic properties. Nucleic Acids Res. 48, 5383–5396 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, K., Gaullier, G. & Luger, K. Nucleosome structure and dynamics are coming of age. Nat. Struct. Mol. Biol. 26, 3–13 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morrison, E. A., Baweja, L., Poirier, M. G., Wereszczynski, J. & Musselman, C. A. Nucleosome composition regulates the histone H3 tail conformational ensemble and accessibility. Nucleic Acids Res. 49, 4750–4767 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, X., Zhai, Z., Chen, Y., Li, J. & Nordenskiöld, L. Recent advances in investigating functional dynamics of chromatin. Front. Genet. 13, 870640 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nozawa, K. et al. Cryo–electron microscopy structure of the H3-H4 octasome: a nucleosome-like particle without histones H2A and H2B. Proc. Natl Acad. Sci. USA 119, e2206542119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelbauskas, L. et al. Sequence-dependent nucleosome structure and stability variations detected by Forster resonance energy transfer. Biochemistry 46, 2239–2248 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, X. et al. Structure and dynamics in the nucleosome revealed by solid-state NMR. Angew. Chem. 57, 9734–9738 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Armeev, G. A., Kniazeva, A. S., Komarova, G. A., Kirpichnikov, M. P. & Shaytan, A. K. Histone dynamics mediate DNA unwrapping and sliding in nucleosomes. Nat. Commun. 12, 2387 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • le Paige, U. B. et al. Characterization of nucleosome sediments for protein interaction studies by solid-state NMR spectroscopy. Magn. Reson. 2, 187–202 (2021).

    Article 

    Google Scholar
     

  • Kitevski-LeBlanc, J. L. et al. Investigating the dynamics of destabilized nucleosomes using methyl-TROSY NMR. J. Am. Chem. Soc. 140, 4774–4777 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Langowski, J. et al. Dynamics of the nucleosomal histone H3 N-terminal tail revealed by high precision single-molecule FRET. Nucleic Acids Res 48, 1551–1571 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gansen, A. et al. High precision FRET studies reveal reversible transitions in nucleosomes between microseconds and minutes. Nat. Commun. 9, 4628 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hansen, J. C., Maeshima, K. & Hendzel, M. J. The solid and liquid states of chromatin. Epigenetics Chromatin 14, 50 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rippe, K. Liquid–liquid phase separation in chromatin. Cold Spring Harb. Perspect. Biol. 14, a040683 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Narlikar, G. J. Phase-separation in chromatin organization. J. Biosci. 45, (2020).

  • Gibson, B. A. et al. Organization of chromatin by intrinsic and regulated phase separation. Cell 179, 470–484.e421 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strickfaden, H. et al. Condensed chromatin behaves like a solid on the mesoscale In vitro and in living cells. Cell 183, 1772–1784 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q. et al. Chromatin liquid–liquid phase separation (LLPS) is regulated by ionic conditions and fiber length. Cells 11, 3145 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiang, S. et al. Site-specific studies of nucleosome interactions by solid-state NMR spectroscopy. Angew. Chem. 57, 4571–4575 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Smrt, S. T. et al. Histone H3 core domain in chromatin with different DNA linker lengths studied by 1H-Detected solid-state NMR spectroscopy. Front. Mol. Biosci. 9, 1106588 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, M. et al. Histone H3 and H4 N-terminal tails in nucleosome arrays at cellular concentrations probed by magic angle spinning NMR spectroscopy. J. Am. Chem. Soc. 135, 15278–15281 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ackermann, B. E. & Debelouchina, G. T. Emerging contributions of solid-state NMR spectroscopy to chromatin structural biology. Front. Mol. Biosci. 8, 741581 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shoaib, M. et al. Histone H4 lysine 20 mono-methylation directly facilitates chromatin openness and promotes transcription of housekeeping genes. Nat. Commun. 12, 4800 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, X., Prasanna, C., Soman, A., Pervushin, K. & Nordenskiöld, L. Dynamic networks observed in the nucleosome core particles couple the histone globular domains with DNA. Commun. Biol. 3, 639 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furukawa, A. et al. Acetylated histone H4 tail enhances histone H3 tail acetylation by altering their mutual dynamics in the nucleosome. Proc. Natl Acad. Sci. USA 117, 19661–19663 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bertin, A., Mangenot, S., Renouard, M., Durand, D. & Livolant, F. Structure and phase diagram of nucleosome core particles aggregated by multivalent cations. Biophys. J. 93, 3652–3663 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bohrmann, B., Haider, M. & Kellenberger, E. Concentration evaluation of chromatin in unstained resin-embedded sections by means of low-dose ratio-contrast imaging in STEM. Ultramicroscopy 49, 235–251 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lowary, P. T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berezhnoy, N. V. et al. The influence of ionic environment and histone tails on columnar order of nucleosome core particles. Biophys. J. 110, 1720–1731 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takegoshi, K., Nakamura, S. & Terao, T. 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem. Phys. Lett. 344, 631–637 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Shi, X., Prasanna, C., Pervushin, K. & Nordenskiöld, L. Solid-state NMR 13C, 15N assignments of human histone H3 in the nucleosome core particle. Biomol. NMR Assign. 14, 99–104 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Verel, R., Ernst, M. & Meier, B. H. Adiabatic dipolar recoupling in solid-state NMR: the DREAM scheme. J. Mag. Reson. 150, 81–99 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Shen, Y. & Bax, A. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J. Biomol. NMR 56, 227–241 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Munowitz, M., Aue, W. P. & Griffin, R. G. Two-dimensional separation of dipolar and scaled isotropic chemical shift interactions in magic angle NMR spectra. J. Chem. Phys. 77, 1686–1689 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Schanda, P. & Ernst, M. Studying dynamics by magic-angle spinning solid-state NMR spectroscopy: principles and applications to biomolecules. Prog. Nucl. Magn. Reson. Spectrosc. 96, 1–46 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, X. & Rienstra, C. M. Site-specific internal motions in GB1 protein microcrystals revealed by 3D 2H-13C-13C solid-State NMR spectroscopy. J. Am. Chem. Soc. 138, 4105–4119 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luger, K., Rechsteiner, T. J. & Richmond, T. J. Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol. Biol. 119, 1–16 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Vab Geet, A. L. calibration of the methanol and glycol nuclear magnetic resonance thermometers with a static thermistor probe. Anal. Chem. 40, 2227–2229 (1968).

    Article 

    Google Scholar
     

  • Levitt, M. H. Symmetry-based pulse sequences in magic-anglespinning solid-state NMR. (2007).

  • Hou, G., Byeon, I. J., Ahn, J., Gronenborn, A. M. & Polenova, T. 1H-13C/1H-15N heteronuclear dipolar recoupling by R-symmetry sequences under fast magic angle spinning for dynamics analysis of biological and organic solids. J. Am. Chem. Soc. 133, 18646–18655 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morcombe, C. R. & Zilm, K. W. Chemical shift referencing in MAS solid state NMR. J. Magn. Reson. 162, 479–486 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bak, M., Rasmussen, J. T. & Nielsen, N. C. SIMPSON: a general simulation program for solid-state NMR spectroscopy. J. Magn. Reson. 147, 296–330 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • [ad_2]

    Source link