[ad_1]
Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).
Merino, N. et al. Living at the extremes: extremophiles and the limits of life in a planetary context. Front. Microbiol. 10, 780 (2019).
Albers, S. V. Extremophiles: life at the deep end. Nature 538, 457 (2016).
Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).
van den Burg, B. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6, 213–218 (2003).
Batista-García, R. A. et al. Characterization of lignocellulolytic activities from a moderate halophile strain of Aspergillus caesiellus isolated from a sugarcane bagasse fermentation. PLoS One 9, e105893 (2014).
Gunde-Cimerman, N., Ramos, J. & Plemenitaš, A. Halotolerant and halophilic fungi. Mycol. Res. 113, 1231–1241 (2009).
DasSarma, S. & DasSarma, P. Halophiles and their enzymes: negativity put to good use. Curr. Opin. Microbiol. 25, 120–126 (2015).
Ali, I., Khaliq, S., Sajid, S. & Akbar, A. In: Fungi in extreme environments: ecological role and biotechnological significance. 291–306 (Springer, 2019).
Gunde-Cimerman, N., Plemenitas, A. & Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 42, 353–375 (2018).
Kis-Papo, T. et al. Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum. Nat. Commun. 5, 3745 (2014).
Tafer, H., Poyntner, C., Lopandic, K., Sterflinger, K. & Pinar, G. Back to the salt mines: genome and transcriptome comparisons of the halophilic fungus aspergillus salisburgensis and its halotolerant relative aspergillus sclerotialis. Genes 10, 381 (2019).
Zajc, J., Kogej, T., Galinski, E. A., Ramos, J. & Gunde-Cimerman, N. Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl. Environ. Microbiol. 80, 247–256 (2014).
Kogej, T. et al. Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153, 4261–4273 (2007).
Zajc, J. et al. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14, 617 (2013).
Kuncici, M. K., Kogej, T., Drobne, D. & Gunde-Cimerman, N. Morphological response of the halophilic fungal genus wallemia to high salinity. Appl. Environ. Microbiol. 76, 329–337 (2010).
Pérez-Llano, Y. et al. Stress reshapes the physiological response of halophile fungi to salinity. Cells 9, 525 (2020).
Jimenez-Gomez, I. et al. Haloadaptative responses of aspergillus sydowii to extreme water deprivation: morphology, compatible solutes, and oxidative stress at NaCl saturation. J. Fungi 6, 316 (2020).
Alker, A. P., Smith, G. W. & Kim, K. Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiologia 460, 105–111 (2001).
Rodríguez-Pupo, E. C. et al. Osmolyte signatures for the protection of aspergillus sydowii cells under halophilic conditions and osmotic shock. J. Fungi 7, 414 (2021).
Latgé, J. P. & Wang, T. Modern biophysics redefines our understanding of fungal cell wall structure, complexity, and dynamics. mBio 13, e01145–22 (2022).
Ehren, H. L. et al. Characterization of the cell wall of a mushroom forming fungus at atomic resolution using solid-state NMR spectroscopy. Cell Surf. 6, 100046 (2020).
Safeer, A. et al. Probing cell-surface interactions in fungal cell walls by high-resolution 1H-detected solid-state NMR spectroscopy. Chem. Eur. J. 29, e202202616 (2022).
Ghassemi, N. et al. Solid-state NMR investigations of extracellular matrices and cell walls of algae, bacteria, fungi, and plants. Chem. Rev. 122, 10036–10086 (2022).
Warnet, X. L., Arnold, A. A., Marcotte, I. & Warschawski, D. E. In-cell solid-state NMR: an emerging technique for the study of biological membranes. Biophys. J. 109, 2461–2466 (2015).
Zhao, W., Fernando, L. D., Kirui, A., Deligey, F. & Wang, T. Solid-state NMR of plant and fungal cell walls: a critical review. Solid State Nucl. Magn. Reson. 107, 101660 (2020).
Kelly, J. E., Chrissian, C. & Stark, R. E. Tailoring NMR experiments for structural characterization of amorphous biological solids: a practical guide. Solid State Nucl. Magn. Reson. 109, 101686 (2020).
Reif, B., Ashbrook, S. E., Emsley, L. & Hong, M. Solid-State NMR Spectroscopy. Nat. Rev. Methods Prim. 1, 2 (2021).
Lewandowski, J. R., Halse, M. E., Blackledge, M. & Emsley, L. Direct observation of hierarchical protein dynamics. Science 348, 578–581 (2015).
Matlahov, I. & van der Wel, P. C. A. Hidden motions and motion-induced invisibility: dynamics-based spectral editing in solid-state NMR. Methods 148, 123–135 (2018).
Latgé, J.-P. The cell wall: a carbohydrate armour for the fungal cell. Mol. Microbiol. 66, 279–290 (2007).
Gow, N. A. R. & Lenardon, M. D. Architecture of the dynamic fungal cell wall. Nat. Rev. Microbiol. 21, 248–259 (2022).
Latgé, J. P. & Chamilos, G. Aspergillus fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 33, e00140–00118 (2019).
Wagener, J., Striegler, K. & Wagener, N. In: The fungal cell wall: an armour and a weapon for human fungal pathogens. Vol. 425 (ed J.P. Latgé) 53–82 (Springer, Cham., 2020).
Kang, X. et al. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat. Commun. 9, 2747 (2018).
Chakraborty, A. et al. A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. Nat. Commun. 12, 6346 (2021).
Fernando, L. D. et al. Solid-state NMR analysis of unlabeled fungal cell walls from Aspergillus and Candida species. J. Struct. Biol. X 6, 100070 (2022).
Lamon, G. et al. Solid-state NMR molecular snapshots of Aspergillus fumigatus cell wall architecture during a conidial morphotype transition. Proc. Natl Acad. Sci. USA 120, e2212003120 (2022).
Sherrington, S. L. et al. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLOS Pathog. 13, e1006403 (2017).
Ikezaki, S. et al. Mild heat stress affects on the cell wall structure in Candida albicans biofilm. Med. Mycol. J. 60, 29–37 (2019).
Komalapriya, C. et al. Integrative model of oxidative stress adaptation in the fungal pathogen Candida albicans. PLoS One 10, e0137750 (2015).
Lesage, A., Bardet, M. & Emsley, L. Through-bond carbon-carbon connectivities in disordered solids by NMR. J. Am. Chem. Soc. 188, 10987–10993 (1999).
Speth, C., Rambach, G., Lass-Florl, C., Howell, P. L. & Sheppard, D. C. Galactosaminogalactan (GAG) and its multiple roles in Aspergillus pathogenesis. Virulence 10, 976–983 (2019).
Latge, J. P. Galactofuranose containing molecules in Aspergillus fumigatus. Med. Mycol. 47, S104–S109 (2009).
Lee, M. J. & Sheppard, D. C. Recent advances in the understanding of the Aspergillus fumigatus cell wall. J. Microbiol. 54, 232–242 (2016).
Saito, H., Tabeta, R. & Ogawa, K. High-resolution solid-state carbon-13 NMR study of chitosan and its salts with acids: conformational characterization of polymorphs and helical structures as viewed from the conformation-dependent carbon-13 chemical shifts. Macromolecules 20, 2424–2430 (1987).
Fernando, L. D. et al. Structural polymorphism of chitin and chitosan in fungal cell walls from solid-state NMR and principal component analysis. Front. Mol. Biosci. 8, 727053 (2021).
Tanner, S. F., Chanzy, H., Vincendon, M., Roux, J. C. & Gaill, F. High-resolution solid-state C-13 nuclear-magnetic-resonance study of chitin. Macromolecules 23, 3576–3583 (1990).
Zhang, Y. et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372, 706–711 (2021).
Ader, C. et al. Structural rearrangements of membrane proteins probed by water-edited solid-state NMR spectroscopy. J. Am. Chem. Soc. 131, 170–176 (2009).
White, P. B., Wang, T., Park, Y. B., Cosgrove, D. J. & Hong, M. Water–polysaccharide interactions in the primary cell wall of arabidopsis thaliana from polarization transfer solid-state NMR. J. Am. Chem. Soc. 136, 10399–10409 (2014).
de Dios, A. C., Pearson, J. G. & Oldfield, E. Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science 260, 1491–1496 (1993).
Bayry, J., Aimanianda, V., Guijarro, J. I., Sunde, M. & Latgé, J.-P. Hydrophobins-unique fungal proteins. PLOS Pathog. 8, e1002700 (2012).
Plemenitaš, A. et al. Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front. Microbiol. 5, 199 (2014).
Elena, B., Lesage, A., Steuernagel, S., Böckmann, A. & Emsley, L. Proton to Carbon-13 INEPT in Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 127, 17296–17302 (2005).
Chrissian, C. et al. Solid-state NMR spectroscopy identifies three classes of lipids in Cryptococcus neoformans melanized cell walls and whole fungal cells. J. Biol. Chem. 295, 15083–15096 (2020).
Briard, B. et al. Galactosaminogalactan activates the inflammasome to provide host protection. Nature 588, 688–692 (2020).
Gravelat, F. N. et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal beta-glucan from the immune system. PLOS Pathog. 9, e1003575 (2013).
Mauff, F. L. & Sheppard, D. C. Understanding Aspergillus fumigatus galactosaminogalactan biosynthesis: a few questions remain. Cell Surf. 9, 100095 (2023).
Fontaine, T. et al. Molecular organization of the alkali-insoluble fraction of aspergillus fumigatus cell wall. J. Biol. Chem. 275, 27594–27607 (2000).
De Vries, R. P. et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus aspergillus. Genome Biol. 18, 28 (2017).
Latge, J. P., Beauvais, A. & Chamilos, G. The cell wall of the human fungal pathogen aspergillus fumigatus: biosynthesis, organization, immune response, and virulence. Annu. Rev. Microbiol. 71, 99–116 (2017).
Beauvais, A. et al. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLOS Pathog. 9, e1003716 (2013).
Muszkieta, L. et al. The glycosylphosphatidylinositol-anchored DFG family is essential for the insertion of galactomannan into the β-(1,3)-glucan-chitin core of the cell wall of aspergillus fumigatus. mSphere 4, e00397–00319 (2019).
Fontaine, T. & Latge, J. P. Galactomannan produced by aspergillus fumigatus: an update on the structure, biosynthesis and biological functions of an emblematic fungal biomarker. J. Fungi 6, 283 (2020).
Mouyna, I. et al. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J. Biol. Chem. 275, 14882–14889 (2000).
Aimanianda, V. et al. The dual activity responsible for the elongation and branching of β-(1,3)-glucan in the fungal cell wall. mBio 8, e00619–00617 (2017).
Muszkieta, L. et al. Deciphering the role of the chitin synthase families 1 and 2 in the in vivo and in vitro growth of Aspergillus fumigatus by multiple gene targeting deletion. Cell Microbiol. 16, 1784–1805 (2014).
Milewski, S., Gabriel, I. & Olchowy, J. Enzymes of UDP-GlcNAc biosynthesis in yeast. J. Yeast 23, 1–14 (2006).
Beauvais, A. & Latge, J. P. Chitinases and peptide mimotopes. Chem. Biol. 12, 7–8 (2005).
Gow, N. A. R., Latge, J. P. & Munro, C. A. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. 5, FUNK-0035-2016 (2017).
Mouyna, I. et al. What are the functions of chitin deacetylases in aspergillus fumigatus? Front. Cell Infect. Microbiol. 10, 28 (2020).
Rappleye, C. A., Eissenberg, L. G. & Goldman, W. E. Histoplasma capsulatum α-(1, 3)-glucan blocks innate immune recognition by the β-glucan receptor. Proc. Natl Acad. Sci. USA 104, 1366–1370 (2007).
Pennerman, K. K., Yin, G., Glenn, A. E. & Bennett, J. W. Identifying candidate Aspergillus pathogenicity factors by annotation frequency. BMC Microbiol. 20, 342 (2020).
Gonzalez-Abradelo, D. et al. First demonstration that ascomycetous halophilic fungi (Aspergillus sydowii and Aspergillus destruens) are useful in xenobiotic mycoremediation under high salinity conditions. Bioresour. Technol. 279, 287–297 (2019).
Berger, B. W. & Sallada, N. D. Hydrophobins: multifunctional biosurfactants for interface engineering. J. Biol. Eng. 13, 10 (2019).
Peidro-Guzman, H. et al. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions. Environ. Microbiol. 23, 3435–3459 (2020).
Soler-Hurtado, M. M., Sandoval-Sierra, J. V., Machordom, A. & Dieguez-Uribeondo, J. Aspergillus sydowii and other potential fungal pathogens in gorgonian octocorals of the Ecuadorian Pacific. PLoS One 11, e0165992 (2016).
Hou, G., Yan, S., Trebosc, J., Amoureux, J. P. & Polenova, T. Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids. J. Magn. Reson. 232, 18–30 (2013).
Bahri, S. et al. 1H-detected characterization of carbon-carbon networks in highly flexible protonated biomolecules using MAS NMR. J. Biomol. NMR 77, 111–119 (2023).
Kang, X. et al. CCMRD: a solid-state NMR database for complex carbohydrates. J. Biomol. NMR 74, 239–245 (2020).
Lesage, A., Emsley, L., Penin, F. & Bockmann, A. Investigation of dipolar-mediated water-protein interactions in microcrystalline Crh by solid-state NMR spectroscopy. J. Am. Chem. Soc. 128, 8246–8255 (2006).
Torchia, D. A. Measurement of proton-enhanced 13C T1 values by a method which suppresses artifacts. J. Magn. Reson. 30, 613–616 (1978).
Martinelli, L. et al. Aspergillus atacamensis and A. salisburgensis: two new halophilic species from hypersaline/arid habitats with a phialosimplex-like morphology. Extremophiles 21, 755–773 (2017).
Sklenar, F. et al. Phylogeny of xerophilic aspergilli (subgenus Aspergillus) and taxonomic revision of section Restricti. Stud. Mycol. 88, 161–236 (2017).
[ad_2]
Source link