Structural adaptation of fungal cell wall in hypersaline environment – Nature Communications

[ad_1]

  • Rothschild, L. J. & Mancinelli, R. L. Life in extreme environments. Nature 409, 1092–1101 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Merino, N. et al. Living at the extremes: extremophiles and the limits of life in a planetary context. Front. Microbiol. 10, 780 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Albers, S. V. Extremophiles: life at the deep end. Nature 538, 457 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Burg, B. Extremophiles as a source for novel enzymes. Curr. Opin. Microbiol. 6, 213–218 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Batista-García, R. A. et al. Characterization of lignocellulolytic activities from a moderate halophile strain of Aspergillus caesiellus isolated from a sugarcane bagasse fermentation. PLoS One 9, e105893 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gunde-Cimerman, N., Ramos, J. & Plemenitaš, A. Halotolerant and halophilic fungi. Mycol. Res. 113, 1231–1241 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DasSarma, S. & DasSarma, P. Halophiles and their enzymes: negativity put to good use. Curr. Opin. Microbiol. 25, 120–126 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ali, I., Khaliq, S., Sajid, S. & Akbar, A. In: Fungi in extreme environments: ecological role and biotechnological significance. 291–306 (Springer, 2019).

  • Gunde-Cimerman, N., Plemenitas, A. & Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 42, 353–375 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kis-Papo, T. et al. Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum. Nat. Commun. 5, 3745 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tafer, H., Poyntner, C., Lopandic, K., Sterflinger, K. & Pinar, G. Back to the salt mines: genome and transcriptome comparisons of the halophilic fungus aspergillus salisburgensis and its halotolerant relative aspergillus sclerotialis. Genes 10, 381 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zajc, J., Kogej, T., Galinski, E. A., Ramos, J. & Gunde-Cimerman, N. Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl. Environ. Microbiol. 80, 247–256 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kogej, T. et al. Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153, 4261–4273 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zajc, J. et al. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14, 617 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuncici, M. K., Kogej, T., Drobne, D. & Gunde-Cimerman, N. Morphological response of the halophilic fungal genus wallemia to high salinity. Appl. Environ. Microbiol. 76, 329–337 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Pérez-Llano, Y. et al. Stress reshapes the physiological response of halophile fungi to salinity. Cells 9, 525 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jimenez-Gomez, I. et al. Haloadaptative responses of aspergillus sydowii to extreme water deprivation: morphology, compatible solutes, and oxidative stress at NaCl saturation. J. Fungi 6, 316 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Alker, A. P., Smith, G. W. & Kim, K. Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiologia 460, 105–111 (2001).

    Article 

    Google Scholar
     

  • Rodríguez-Pupo, E. C. et al. Osmolyte signatures for the protection of aspergillus sydowii cells under halophilic conditions and osmotic shock. J. Fungi 7, 414 (2021).

    Article 

    Google Scholar
     

  • Latgé, J. P. & Wang, T. Modern biophysics redefines our understanding of fungal cell wall structure, complexity, and dynamics. mBio 13, e01145–22 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehren, H. L. et al. Characterization of the cell wall of a mushroom forming fungus at atomic resolution using solid-state NMR spectroscopy. Cell Surf. 6, 100046 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Safeer, A. et al. Probing cell-surface interactions in fungal cell walls by high-resolution 1H-detected solid-state NMR spectroscopy. Chem. Eur. J. 29, e202202616 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Ghassemi, N. et al. Solid-state NMR investigations of extracellular matrices and cell walls of algae, bacteria, fungi, and plants. Chem. Rev. 122, 10036–10086 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Warnet, X. L., Arnold, A. A., Marcotte, I. & Warschawski, D. E. In-cell solid-state NMR: an emerging technique for the study of biological membranes. Biophys. J. 109, 2461–2466 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, W., Fernando, L. D., Kirui, A., Deligey, F. & Wang, T. Solid-state NMR of plant and fungal cell walls: a critical review. Solid State Nucl. Magn. Reson. 107, 101660 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly, J. E., Chrissian, C. & Stark, R. E. Tailoring NMR experiments for structural characterization of amorphous biological solids: a practical guide. Solid State Nucl. Magn. Reson. 109, 101686 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reif, B., Ashbrook, S. E., Emsley, L. & Hong, M. Solid-State NMR Spectroscopy. Nat. Rev. Methods Prim. 1, 2 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lewandowski, J. R., Halse, M. E., Blackledge, M. & Emsley, L. Direct observation of hierarchical protein dynamics. Science 348, 578–581 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Matlahov, I. & van der Wel, P. C. A. Hidden motions and motion-induced invisibility: dynamics-based spectral editing in solid-state NMR. Methods 148, 123–135 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latgé, J.-P. The cell wall: a carbohydrate armour for the fungal cell. Mol. Microbiol. 66, 279–290 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Gow, N. A. R. & Lenardon, M. D. Architecture of the dynamic fungal cell wall. Nat. Rev. Microbiol. 21, 248–259 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Latgé, J. P. & Chamilos, G. Aspergillus fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 33, e00140–00118 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagener, J., Striegler, K. & Wagener, N. In: The fungal cell wall: an armour and a weapon for human fungal pathogens. Vol. 425 (ed J.P. Latgé) 53–82 (Springer, Cham., 2020).

  • Kang, X. et al. Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat. Commun. 9, 2747 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborty, A. et al. A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR. Nat. Commun. 12, 6346 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernando, L. D. et al. Solid-state NMR analysis of unlabeled fungal cell walls from Aspergillus and Candida species. J. Struct. Biol. X 6, 100070 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamon, G. et al. Solid-state NMR molecular snapshots of Aspergillus fumigatus cell wall architecture during a conidial morphotype transition. Proc. Natl Acad. Sci. USA 120, e2212003120 (2022).

    Article 

    Google Scholar
     

  • Sherrington, S. L. et al. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLOS Pathog. 13, e1006403 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ikezaki, S. et al. Mild heat stress affects on the cell wall structure in Candida albicans biofilm. Med. Mycol. J. 60, 29–37 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Komalapriya, C. et al. Integrative model of oxidative stress adaptation in the fungal pathogen Candida albicans. PLoS One 10, e0137750 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lesage, A., Bardet, M. & Emsley, L. Through-bond carbon-carbon connectivities in disordered solids by NMR. J. Am. Chem. Soc. 188, 10987–10993 (1999).

    Article 

    Google Scholar
     

  • Speth, C., Rambach, G., Lass-Florl, C., Howell, P. L. & Sheppard, D. C. Galactosaminogalactan (GAG) and its multiple roles in Aspergillus pathogenesis. Virulence 10, 976–983 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latge, J. P. Galactofuranose containing molecules in Aspergillus fumigatus. Med. Mycol. 47, S104–S109 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, M. J. & Sheppard, D. C. Recent advances in the understanding of the Aspergillus fumigatus cell wall. J. Microbiol. 54, 232–242 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saito, H., Tabeta, R. & Ogawa, K. High-resolution solid-state carbon-13 NMR study of chitosan and its salts with acids: conformational characterization of polymorphs and helical structures as viewed from the conformation-dependent carbon-13 chemical shifts. Macromolecules 20, 2424–2430 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fernando, L. D. et al. Structural polymorphism of chitin and chitosan in fungal cell walls from solid-state NMR and principal component analysis. Front. Mol. Biosci. 8, 727053 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanner, S. F., Chanzy, H., Vincendon, M., Roux, J. C. & Gaill, F. High-resolution solid-state C-13 nuclear-magnetic-resonance study of chitin. Macromolecules 23, 3576–3583 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372, 706–711 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ader, C. et al. Structural rearrangements of membrane proteins probed by water-edited solid-state NMR spectroscopy. J. Am. Chem. Soc. 131, 170–176 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • White, P. B., Wang, T., Park, Y. B., Cosgrove, D. J. & Hong, M. Water–polysaccharide interactions in the primary cell wall of arabidopsis thaliana from polarization transfer solid-state NMR. J. Am. Chem. Soc. 136, 10399–10409 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Dios, A. C., Pearson, J. G. & Oldfield, E. Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science 260, 1491–1496 (1993).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bayry, J., Aimanianda, V., Guijarro, J. I., Sunde, M. & Latgé, J.-P. Hydrophobins-unique fungal proteins. PLOS Pathog. 8, e1002700 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plemenitaš, A. et al. Adaptation to high salt concentrations in halotolerant/halophilic fungi: a molecular perspective. Front. Microbiol. 5, 199 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elena, B., Lesage, A., Steuernagel, S., Böckmann, A. & Emsley, L. Proton to Carbon-13 INEPT in Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 127, 17296–17302 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chrissian, C. et al. Solid-state NMR spectroscopy identifies three classes of lipids in Cryptococcus neoformans melanized cell walls and whole fungal cells. J. Biol. Chem. 295, 15083–15096 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briard, B. et al. Galactosaminogalactan activates the inflammasome to provide host protection. Nature 588, 688–692 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gravelat, F. N. et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal beta-glucan from the immune system. PLOS Pathog. 9, e1003575 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mauff, F. L. & Sheppard, D. C. Understanding Aspergillus fumigatus galactosaminogalactan biosynthesis: a few questions remain. Cell Surf. 9, 100095 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fontaine, T. et al. Molecular organization of the alkali-insoluble fraction of aspergillus fumigatus cell wall. J. Biol. Chem. 275, 27594–27607 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Vries, R. P. et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus aspergillus. Genome Biol. 18, 28 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latge, J. P., Beauvais, A. & Chamilos, G. The cell wall of the human fungal pathogen aspergillus fumigatus: biosynthesis, organization, immune response, and virulence. Annu. Rev. Microbiol. 71, 99–116 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beauvais, A. et al. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLOS Pathog. 9, e1003716 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muszkieta, L. et al. The glycosylphosphatidylinositol-anchored DFG family is essential for the insertion of galactomannan into the β-(1,3)-glucan-chitin core of the cell wall of aspergillus fumigatus. mSphere 4, e00397–00319 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fontaine, T. & Latge, J. P. Galactomannan produced by aspergillus fumigatus: an update on the structure, biosynthesis and biological functions of an emblematic fungal biomarker. J. Fungi 6, 283 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mouyna, I. et al. Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J. Biol. Chem. 275, 14882–14889 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aimanianda, V. et al. The dual activity responsible for the elongation and branching of β-(1,3)-glucan in the fungal cell wall. mBio 8, e00619–00617 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muszkieta, L. et al. Deciphering the role of the chitin synthase families 1 and 2 in the in vivo and in vitro growth of Aspergillus fumigatus by multiple gene targeting deletion. Cell Microbiol. 16, 1784–1805 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Milewski, S., Gabriel, I. & Olchowy, J. Enzymes of UDP-GlcNAc biosynthesis in yeast. J. Yeast 23, 1–14 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Beauvais, A. & Latge, J. P. Chitinases and peptide mimotopes. Chem. Biol. 12, 7–8 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gow, N. A. R., Latge, J. P. & Munro, C. A. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. 5, FUNK-0035-2016 (2017).

  • Mouyna, I. et al. What are the functions of chitin deacetylases in aspergillus fumigatus? Front. Cell Infect. Microbiol. 10, 28 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rappleye, C. A., Eissenberg, L. G. & Goldman, W. E. Histoplasma capsulatum α-(1, 3)-glucan blocks innate immune recognition by the β-glucan receptor. Proc. Natl Acad. Sci. USA 104, 1366–1370 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pennerman, K. K., Yin, G., Glenn, A. E. & Bennett, J. W. Identifying candidate Aspergillus pathogenicity factors by annotation frequency. BMC Microbiol. 20, 342 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez-Abradelo, D. et al. First demonstration that ascomycetous halophilic fungi (Aspergillus sydowii and Aspergillus destruens) are useful in xenobiotic mycoremediation under high salinity conditions. Bioresour. Technol. 279, 287–297 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berger, B. W. & Sallada, N. D. Hydrophobins: multifunctional biosurfactants for interface engineering. J. Biol. Eng. 13, 10 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peidro-Guzman, H. et al. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions. Environ. Microbiol. 23, 3435–3459 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Soler-Hurtado, M. M., Sandoval-Sierra, J. V., Machordom, A. & Dieguez-Uribeondo, J. Aspergillus sydowii and other potential fungal pathogens in gorgonian octocorals of the Ecuadorian Pacific. PLoS One 11, e0165992 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, G., Yan, S., Trebosc, J., Amoureux, J. P. & Polenova, T. Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids. J. Magn. Reson. 232, 18–30 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahri, S. et al. 1H-detected characterization of carbon-carbon networks in highly flexible protonated biomolecules using MAS NMR. J. Biomol. NMR 77, 111–119 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang, X. et al. CCMRD: a solid-state NMR database for complex carbohydrates. J. Biomol. NMR 74, 239–245 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lesage, A., Emsley, L., Penin, F. & Bockmann, A. Investigation of dipolar-mediated water-protein interactions in microcrystalline Crh by solid-state NMR spectroscopy. J. Am. Chem. Soc. 128, 8246–8255 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Torchia, D. A. Measurement of proton-enhanced 13C T1 values by a method which suppresses artifacts. J. Magn. Reson. 30, 613–616 (1978).

    ADS 
    CAS 

    Google Scholar
     

  • Martinelli, L. et al. Aspergillus atacamensis and A. salisburgensis: two new halophilic species from hypersaline/arid habitats with a phialosimplex-like morphology. Extremophiles 21, 755–773 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sklenar, F. et al. Phylogeny of xerophilic aspergilli (subgenus Aspergillus) and taxonomic revision of section Restricti. Stud. Mycol. 88, 161–236 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Source link