Reply to: Revisiting the use of structural similarity index in Hi-C – Nature Genetics

[ad_1]

  • Galan, S. et al. CHESS enables quantitative comparison of chromatin contact data and automatic feature extraction. Nat. Genet. https://doi.org/10.1038/s41588-020-00712-y (2020).

  • Lee, H., Blumberg, B., Lawrence, M. S. & Shioda, T. Revisiting the use of structural similarity index in Hi-C. Nat. Genet. https://doi.org/10.1038/s41588-023-01594-6 (2023).

  • Gunsalus, L. M. et al. Comparing chromatin contact maps at scale: methods and insights. Preprint at bioRxiv https://doi.org/10.1101/2023.04.04.535480 (2023).

  • Díaz, N. et al. Chromatin conformation analysis of primary patient tissue using a low input Hi-C method. Nat. Commun. 9, 4938 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ing-Simmons, E. et al. Independence of chromatin conformation and gene regulation during Drosophila dorsoventral patterning. Nat. Genet. 53, 487–499 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eagen, K. P. Principles of chromosome architecture revealed by Hi-C. Trends Biochem. Sci. 43, 469–478 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pal, K., Forcato, M. & Ferrari, F. Hi-C analysis: from data generation to integration. Biophys. Rev. 11, 67–78 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lun, A. T. L. & Smyth, G. K. diffHic: a Bioconductor package to detect differential genomic interactions in Hi-C data. BMC Bioinformatics 16, 258 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cook, K. B. et al. Measuring significant changes in chromatin conformation with ACCOST. Nucleic Acids Res. 48, 2303–2311 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruse, K., Hug, C. B. & Vaquerizas, J. M. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data. Genome Biol. 21, 303 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dekker, J. et al. The 4D nucleome project. Nature 549, 219–226 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: visualization of intersecting sets. IEEE Trans. Vis. Comput. Graph. 20, 1983–1992 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • [ad_2]

    Source link