Enriched environment exposure during development positively impacts the structure and function of the visual cortex in mice – Scientific Reports

[ad_1]

  • Rosenzweig, M. R., Krech, D., Bennett, E. L. & Diamond, M. C. Effects of environmental complexity and training on brain chemistry and anatomy: A replication and extension. J. Comp. Physiol. Psychol. 55, 429–437 (1962).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenzweig, M. R. & Bennett, E. L. Effects of differential environments on brain weights and enzyme activities in gerbils, rats, and mice. Dev. Psychobiol. 2, 87–95 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenzweig, M. R., Bennett, E. L., Hebert, M. & Morimoto, H. Social grouping cannot account for cerebral effects of enriched environments. Brain Res. 153, 563–576 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van Praag, H., Kempermann, G. & Gage, F. H. Neural consequences of enviromental enrichment. Nat. Rev. Neurosci. 1, 191–198 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Nithianantharajah, J. & Hannan, A. J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 7, 697–709 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • La Torre, J. C. Effect of differential environmental enrichment on brain weight and on acetylcholinesterase and cholinesterase activities in mice. Exp. Neurol. 22, 493–503 (1968).

    Article 
    PubMed 

    Google Scholar
     

  • Bennett, E. L., Rosenzweig, M. R. & Diamond, M. C. Rat brain: Effects of environmental enrichment on wet and dry weights. Science 163, 825–826 (1969).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Diamond, M. C., Krech, D. & Rosenzweig, M. R. The effects of an enriched environment on the histology of the rat cerebral cortex. J. Comp. Neurol. 123, 111–119 (1964).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falkenberg, T. et al. Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neurosci. Lett. 138, 153–156 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ickes, B. R. et al. Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp. Neurol. 164, 45–52 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mohammed, A. H. et al. Environmental influences on the central nervous system and their implications for the aging rat. Behav. Brain Res. 57, 183–191 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pham, T. M. et al. Changes in brain nerve growth factor levels and nerve growth factor receptors in rats exposed to environmental enrichment for one year. Neuroscience 94, 279–286 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carro, E., Nuñez, A., Busiguina, S. & Torres-Aleman, I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926–2933 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ciucci, F. et al. Insulin-like growth factor 1 (IGF-1) mediates the effects of enriched environment (EE) on visual cortical development. PLoS ONE 2, e475 (2007).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenough, W. T., Volkmar, F. R. & Juraska, J. M. Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Exp. Neurol. 41, 371–378 (1973).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolb, B., Teskey, G. C. & Gibb, R. Factors influencing cerebral plasticity in the normal and injured brain. Front. Hum. Neurosci. 4, 204 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leggio, M. G. et al. Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav. Brain Res. 163, 78–90 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Gelfo, F., De Bartolo, P., Giovine, A., Petrosini, L. & Leggio, M. G. Layer and regional effects of environmental enrichment on the pyramidal neuron morphology of the rat. Neurobiol. Learn. Mem. 91, 353–365 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Fu, Y., Wu, X., Lu, J. & Huang, J. Presynaptic GABAB receptor regulates activity-dependent maturation and patterning of inhibitory synapses through dynamic allocation of synaptic vesicles. Front. Cell. Neurosci. 6, 57 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, C. K. E. & Herms, J. Structural dynamics of dendritic spines are influenced by an environmental enrichment: An in vivo imaging study. Cereb. Cortex 24, 377–384 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Mohammed, A. H. et al. Environmental enrichment and the brain. In Progress in Brain Research vol. 138, 109–133 (Elsevier, 2002).

  • Kolb, B. & Gibb, R. Environmental enrichment and cortical injury: Behavioral and anatomical consequences of frontal cortex lesions. Cereb. Cortex 1, 189–198 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sale, A. et al. Enriched environment and acceleration of visual system development. Neuropharmacology 47, 649–660 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cancedda, L. et al. Acceleration of visual system development by environmental enrichment. J. Neurosci. 24, 4840–4848 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baroncelli, L. et al. Early IGF-1 primes visual cortex maturation and accelerates developmental switch between NKCC1 and KCC2 chloride transporters in enriched animals. Neuropharmacology 113, 167–177 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Prusky, G. T., West, P. W. R. & Douglas, R. M. Behavioral assessment of visual acuity in mice and rats. Vis. Res. 40, 2201–2209 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greifzu, F. et al. Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity. Proc. Natl. Acad. Sci. 111, 1150–1155 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campi, K. L., Collins, C. E., Todd, W. D., Kaas, J. & Krubitzer, L. Comparison of area 17 cellular composition in laboratory and wild-caught rats including diurnal and nocturnal species. Brain. Behav. Evol. 77, 116–130 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartoletti, A., Medini, P., Berardi, N. & Maffei, L. Environmental enrichment prevents effects of dark-rearing in the rat visual cortex. Nat. Neurosci. 7, 215–216 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Narducci, R. et al. Early impoverished environment delays the maturation of cerebral cortex. Sci. Rep. 8, 1187 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cang, J., Kalatsky, V. A., Löwel, S. & Stryker, M. P. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse. Vis. Neurosci. 22, 685–691 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sale, A. A systematic look at environmental modulation and its impact in brain development. Trends Neurosci. 41, 4–17 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalogeraki, E., Pielecka-Fortuna, J., Hüppe, J. M. & Löwel, S. Physical exercise preserves adult visual plasticity in mice and restores it after a stroke in the somatosensory cortex. Front. Aging Neurosci. 8, 212 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tooley, U. A., Bassett, D. S. & Mackey, A. P. Environmental influences on the pace of brain development. Nat. Rev. Neurosci. 22, 372–384 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lenroot, R. K. et al. Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence. Hum. Brain Mapp. 30, 163–174 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Panizzon, M. S. et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex 19, 2728–2735 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jha, S. C. et al. Environmental influences on infant cortical thickness and surface area. Cereb. Cortex 29, 1139–1149 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D. & Wiesel, T. N. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324, 361–364 (1986).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuett, S., Bonhoeffer, T. & Hübener, M. Mapping retinotopic structure in mouse visual cortex with optical imaging. J. Neurosci. 22, 6549–6559 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalatsky, V. A. & Stryker, M. P. New paradigm for optical imaging: Temporally encoded maps of intrinsic signal. Neuron 38, 529–545 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marshel, J. H., Garrett, M. E., Nauhaus, I. & Callaway, E. M. Functional specialization of seven mouse visual cortical areas. Neuron 72, 1040–1054 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garrett, M. E., Nauhaus, I., Marshel, J. H. & Callaway, E. M. Topography and areal organization of mouse visual cortex. J. Neurosci. 34, 12587–12600 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juavinett, A. L., Nauhaus, I., Garrett, M. E., Zhuang, J. & Callaway, E. M. Automated identification of mouse visual areas with intrinsic signal imaging. Nat. Protoc. 12, 32–43 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang, J. et al. An extended retinotopic map of mouse cortex. Elife 6, e18372 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Souza, B. O. F., Abou Rjeili, M., Quintana, C., Beaulieu, J. M. & Casanova, C. Spatial frequency selectivity is impaired in dopamine D2 receptor knockout Mice. Front. Integr. Neurosci. 11, 41 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moldestad, O., Karlsen, P., Molden, S. & Storm, J. F. Tracheotomy improves experiment success rate in mice during urethane anesthesia and stereotaxic surgery. J. Neurosci. Methods 176, 57–62 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Sereno, M. I., McDonald, C. T. & Allman, J. M. Analysis of retinotopic maps in extrastriate cortex. Cereb. Cortex 4, 601–620 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cang, J. et al. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48, 797–809 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbas Farishta, R. et al. Impact of CB1 receptor deletion on visual responses and organization of primary visual cortex in adult mice. Investig. Ophthalmol. Vis. Sci. 56, 7697–7707 (2015).

    Article 

    Google Scholar
     

  • Freund, J. et al. Emergence of individuality in genetically identical mice. Science 340, 756–759 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Körholz, J. C. et al. Selective increases in inter-individual variability in response to environmental enrichment in female mice. Elife 7, e35690 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Löwel, S., Kalogeraki, E., Dehmel, S. & Makowiecki, K. Environmental conditions strongly affect brain plasticity. e-Neuroforum 24, A19–A29 (2018).

    Article 

    Google Scholar
     

  • Lathe, R. The individuality of mice. Genes Brain Behav. 3, 317–327 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gopnik, A. Childhood as a solution to explore–exploit tensions. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190502 (2020).

    Article 

    Google Scholar
     

  • Calhoun, J. B. Death squared: The explosive growth and demise of a mouse population. Proc. R. Soc. Med. 66, 80–88 (1973).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Cué, C. et al. Behavioral, cognitive and biochemical responses to different environmental conditions in male Ts65Dn mice, a model of Down syndrome. Behav. Brain Res. 163, 174–185 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Martínez-Cué, C. et al. Differential effects of environmental enrichment on behavior and learning of male and female Ts65Dn mice, a model for Down syndrome. Behav. Brain Res. 134, 185–200 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Torres-Reveron, A. & Dow-Edwards, D. Scoping review on environmental enrichment: Are critical periods and sex differences adequately studied?. Pharmacol. Biochem. Behav. 218, 173420 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benson, N. C., Kupers, E. R., Barbot, A., Carrasco, M. & Winawer, J. Cortical magnification in human visual cortex parallels task performance around the visual field. Elife 10, e67685 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stoll, C. & Dye, M. W. G. Sign language experience redistributes attentional resources to the inferior visual field. Cognition 191, 103957 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • van Versendaal, D. & Levelt, C. N. Inhibitory interneurons in visual cortical plasticity. Cell. Mol. Life Sci. 73, 3677–3691 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, R. R. & Burkhalter, A. A polysynaptic feedback circuit in rat visual cortex. J. Neurosci. Off. J. Soc. Neurosci. 17, 7129–7140 (1997).

    Article 
    CAS 

    Google Scholar
     

  • [ad_2]

    Source link