A macroevolutionary common-garden experiment reveals differentially evolvable bone organization levels in slow arboreal mammals – Communications Biology

[ad_1]

  • Simpson, G. G. The Major Features of Evolution (Columbia University Press, 1953).

  • Gould, S. J. Ontogeny and Phylogeny (Cambridge: Harvard University Press, 1977).

  • Navalón, G., Bjarnason, A., Griffiths, E. & Benson, R. B. Environmental signal in the evolutionary diversification of bird skeletons. Nature 611, 306–311 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Jablonski, D. Evolvability and macroevolution: overview and synthesis. Evol. Biol. 49, 265–291 (2022).

    Article 

    Google Scholar
     

  • Hansen, T. F., Houle, D., Pavlicev, M. & Pélabon, C. Evolvability: A Unifying Concept in Evolutionary Biology (The MIT Press, 2022).

  • Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ingram, T. & Mahler, D. L. SURFACE: detecting convergent evolution from comparative data by fitting Ornstein-Uhlenbeck models with stepwise Akaike Information Criterion. Methods Ecol. Evol. 4, 416–425 (2013).

    Article 

    Google Scholar
     

  • Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69, 2140–2153 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).

    Article 

    Google Scholar
     

  • Grossnickle, D. M. et al. Challenges and advances in methods for measuring phenotypic convergence. Preprint at bioRxiv https://doi.org/10.1101/2022.10.18.512739 (2023).

  • Bels, V. L. & Russell, A. P. The concept of convergent evolution and its relationship to the understanding of form and function. in Convergent Evolution: Animal Form and Function (eds Bels, V. L. & Russell, A. P.) 1–20 (Springer International Publishing, 2023).

  • Amson, E. & Bibi, F. Differing effects of size and lifestyle on bone structure in mammals. BMC Biol. 19, 87 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grossnickle, D. M. et al. Incomplete convergence of gliding mammal skeletons. Evolution 74, 2662–2680 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bastir, M. & Rosas, A. Mosaic evolution of the basicranium in Homo and its relation to modular development evolutionary biology. Evol. Biol. 36, 57–70 (2009).

    Article 

    Google Scholar
     

  • Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spear, J. K. & Williams, S. A. Mosaic patterns of homoplasy accompany the parallel evolution of suspensory adaptations in the forelimb of tree sloths (Folivora: Xenarthra). Zool. J. Linnean Soc. zlaa154 https://doi.org/10.1093/zoolinnean/zlaa154 (2020).

  • Wölfer, J. & Nyakatura, J. A. Weighing homoplasy against alternative scenarios with the help of macroevolutionary modeling: a case study on limb bones of fossorial sciuromorph rodents. Ecol. Evol. 9, 11025–11039 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe, J., Field, D. J. & Matsuoka, H. Wing musculature reconstruction in extinct flightless auks (Pinguinus and Mancalla) reveals incomplete convergence with penguins (Spheniscidae) due to differing ancestral states. Integr. Org. Biol. obaa040, (2020).

  • Francillon‐Vieillot, H. et al. Microstructure and mineralization of vertebrate skeletal tissues. in Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends (ed Carter J.G.) 175–234, (American Geophysical Union (AGU), 1990).

  • Keklikoglou, K. et al. Micro-CT for biological and biomedical studies: a comparison of imaging techniques. J. Imaging 7, 172 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bardua, C. et al. Evolutionary integration of the frog cranium. Evolution 74, 1200–1215 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Navalón, G., Bright, J. A., Marugán-Lobón, J. & Rayfield, E. J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fabre, A.-C., Cornette, R., Goswami, A. & Peigné, S. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans. J. Anat. 226, 596–610 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serio, C., Raia, P. & Meloro, C. Locomotory adaptations in 3D humerus geometry of Xenarthra: testing for convergence. Front. Ecol. Evol. 8, 139 (2020).

    Article 

    Google Scholar
     

  • Kilbourne, B. M. Selective regimes and functional anatomy in the mustelid forelimb: diversification toward specializations for climbing, digging, and swimming. Ecol. Evol. 7, 8852–8863 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Etienne, C., Filippo, A., Cornette, R. & Houssaye, A. Effect of mass and habitat on the shape of limb long bones: a morpho-functional investigation on Bovidae (Mammalia: Cetartiodactyla). J. Anat. 238, 886–904 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Alfieri, F., Nyakatura, J. A. & Amson, E. Evolution of bone cortical compactness in slow arboreal mammals. Evolution 75, 542–554 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Alfieri, F., Botton-Divet, L., Nyakatura, J. A. & Amson, E. Integrative approach uncovers new patterns of ecomorphological convergence in slow arboreal xenarthrans. J. Mamm. Evol. https://doi.org/10.1007/s10914-021-09590-5 (2021).

  • Amson, E., Arnold, P., van Heteren, A. H., Canoville, A. & Nyakatura, J. A. Trabecular architecture in the forelimb epiphyses of extant xenarthrans (Mammalia). Front. Zool. 14, 52 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hildebrand, M. Digging of quadrupeds. in Functional Vertebrate Morphology (eds Hildebrand, M. et al.) 89–109 (Harvard Univ. Press, 1985).

  • Gasc, J. P., Renous, S., Casinos, A., Laville, E. & Bou, J. Comparison of diverse digging patterns in some small mammals. Fortschr. Zool. 30, 35–38 (1985).


    Google Scholar
     

  • Kivell, T. L. A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils? J. Anat. 228, 569–594 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruff, C. B. & Runestad, J. A. Primate limb bone structural adaptations. Annu. Rev. Anthropol. 21, 407–433 (1992).

    Article 

    Google Scholar
     

  • Lieberman, D. E., Devlin, M. J. & Pearson, O. M. Articular area responses to mechanical loading: effects of exercise, age, and skeletal location. Am. J. Phys. Anthropol. 116, 266–277 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahlman, J. W., Price‐Waldman, R. M., Lippe, H. W., Breuer, K. S. & Swartz, S. M. Simplifying a wing: diversity and functional consequences of digital joint reduction in bat wings. J. Anat. 229, 114–127 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lieberman, D. E. Making behavioral and phylogenetic inferences from hominid fossils: considering the developmental influence of mechanical forces. Annu. Rev. Anthropol. 26, 185–210 (1997).

    Article 

    Google Scholar
     

  • Ruff, C., Holt, B. & Trinkaus, E. Who’s afraid of the big bad Wolff?: ‘Wolff’s law’ and bone functional adaptation. Am. J. Phys. Anthropol. 129, 484–498 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Barak, M. M., Lieberman, D. E. & Hublin, J.-J. A Wolff in sheep’s clothing: trabecular bone adaptation in response to changes in joint loading orientation. Bone 49, 1141–1151 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Wund, M. A. Assessing the impacts of phenotypic plasticity on evolution. Integr. Comp. Biol. 52, 5–15 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Kilbourne, B. M. & Hutchinson, J. R. Morphological diversification of biomechanical traits: mustelid locomotor specializations and the macroevolution of long bone cross-sectional morphology. BMC Evol. Biol. 19, 37 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rickman, J., Burtner, A. E., Linden, T. J., Santana, S. E. & Law, C. J. Size and locomotor ecology have differing effects on the external and internal morphologies of squirrel (Rodentia: Sciuridae) limb bones. Integr. Org. Biol obad017, (2023).

  • Wölfer, J. The Morphology of the Scapula and Femur of Sciuromorph Rodents in Light of Scaling, Lifestyle, Homoplasy, and Macroevolutionary Modelling. PhD Dissertation, Humboldt-Universität zu Berlin, Germany (2020).

  • Scheidt, A., Wölfer, J. & Nyakatura, J. A. The evolution of femoral cross-sectional properties in sciuromorph rodents: influence of body mass and locomotor ecology. J. Morphol. 280, 1156–1169 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mielke, M. et al. Trabecular architecture in the sciuromorph femoral head: allometry and functional adaptation. Zool. Lett. 4, 10 (2018).

    Article 

    Google Scholar
     

  • Dunn, R. H. Functional morphology of the postcranial skeleton. in Methods in Paleoecology. Reconstructing Cenozoic Terrestrial Environments and Ecological Communities (eds Croft, D. A. et al.) 23–36 (Springer, 2018).

  • Ryan, T. M. & Ketcham, R. A. The three-dimensional structure of trabecular bone in the femoral head of strepsirrhine primates. J. Hum. Evol. 43, 1–26 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Harmon, E. H. The shape of the hominoid proximal femur: a geometric morphometric analysis. J. Anat. 210, 170–185 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, B. A., Ruff, C. B., Simons, E. L. R. & Organ, J. M. Humeral cross-sectional shape in suspensory primates and sloths. Anat. Rec. 296, 545–556 (2013).

    Article 

    Google Scholar
     

  • Losos, J. B. Improbable Destinies: How Predictable is Evolution? (Penguin UK., 2017).

  • Wake, D. B. Homoplasy—the result of natural selection, or evidence of design limitations. Am. Nat. 138, 543–567 (1991).

    Article 

    Google Scholar
     

  • Stayton, C. T. Is convergence surprising? An examination of the frequency of convergence in simulated datasets. J. Theor. Biol. 252, 1–14 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Rafferty, K. L. Structural design of the femoral neck in primates. J. Hum. Evol. 34, 361–383 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • White, J. L. Indicators of locomotor habits in xenarthrans: evidence for locomotor heterogeneity among fossil sloths. J. Vertebr. Paleontol. 13, 230–242 (1993).

    Article 

    Google Scholar
     

  • Amson, E. & Kolb, C. Scaling effect on the mid-diaphysis properties of long bones—the case of the Cervidae (deer). Sci. Nat. 58, 103.7–8 (2016).


    Google Scholar
     

  • Boyer, D. M., Toussaint, S. & Godinot, M. Postcrania of the most primitive euprimate and implications for primate origins. J. Hum. Evol. 111, 202–215 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Weisbecker, V. & Archer, M. Parallel evolution of hand anatomy in kangaroos and vombatiform marsupials: functional and evolutionary implications: parallelism in the hand of kangaroos and vombatiforms. Palaeontology 51, 321–338 (2008).

    Article 

    Google Scholar
     

  • Meredith, R. W., Westerman, M. & Springer, M. S. A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes. Mol. Phylogenet. Evol. 51, 554–571 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richards, H. L., Rovinsky, D. S., Adams, J. W. & Evans, A. R. Inferring the palaeobiology of palorchestid marsupials through analysis of mammalian humeral and femoral shape. J. Mammal. Evol. 30, 47–66 (2023).

    Article 

    Google Scholar
     

  • Nyakatura, J. A. The convergent evolution of suspensory posture and locomotion in tree sloths. J. Mammal. Evol. 19, 225–234 (2012).

    Article 

    Google Scholar
     

  • Ishida, H., Jouffroy, F. & Nakano, Y. Comparative dynamics of pronograde and upside down horizontal quadrupedalism in the slow loris (Nycticebus coucang). in Gravity, Posture and Locomotion in Primates (eds Jouffroy, F. et al.) 209–220 (Firenze, Il Sedicesimo, 1990).

  • Marchi, D. et al. The locomotion of Babakotia radofilai inferred from epiphyseal and diaphyseal morphology of the humerus and femur. J. Morphol. 277, 1199–1218 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Stern, J. T. & Oxnard, C. T. Primate locomotion: some links with evolution and morphology. Primatologia 4, 1–93 (1973).


    Google Scholar
     

  • Mossor, A. M., Young, J. W. & Butcher, M. T. Does a suspensory lifestyle result in increased tensile strength? Organ-level material properties of sloth limb bones. J. Exp. Biol. 225, jeb242866 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zelditch, M. L., Ye, J., Mitchell, J. S. & Swiderski, D. L. Rare ecomorphological convergence on a complex adaptive landscape: body size and diet mediate evolution of jaw shape in squirrels (Sciuridae). Evolution 71, 633–649 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Montgomery, G. G. Cyclopes didactylus (tapacara, serafin de platanar, silky anteater). in Costa Rican Natural History (ed. Janzen, D. H.) 461–463 (University of Chicago Press, 1983).

  • Hayssen, V., Miranda, F. & Pasch, B. Cyclopes didactylus (Pilosa: Cyclopedidae). Mamm. Species 44, 51–58 (2012).

    Article 

    Google Scholar
     

  • Godfrey, L. R., Granatosky, M. C. & Jungers, W. L. The hands of subfossil lemurs. in The Evolution of the Primate Hand. Anatomical, Developmental, Functional, and Paleontological Evidence (eds Kivell, T. L. et al.) 421–453 (Springer, 2016).

  • Tyndale-Biscoe, C. H. Life of Marsupials (Csiro Publishing, 2005).

  • Amson, E., de Muizon, C., Laurin, M., Argot, C. & de Buffrénil, V. Gradual adaptation of bone structure to aquatic lifestyle in extinct sloths from Peru. Proc. R. Soc. B. 281, 20140192 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Webster, M. & Zelditch, M. L. Evolutionary modifications of ontogeny: heterochrony and beyond. Paleobiology 31, 354–372 (2005).

    Article 

    Google Scholar
     

  • Watanabe, J. Clade-specific evolutionary diversification along ontogenetic major axes in avian limb skeleton. Evolution 72, 2632–2652 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Saers, J. P. P., Gordon, A. D., Ryan, T. M. & Stock, J. T. Growth and development of trabecular structure in the calcaneus of Japanese macaques (Macaca fuscata) reflects locomotor behavior, life history, and neuromuscular development. J. Anat. 00, 1–15 (2022).


    Google Scholar
     

  • Gould, S. J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–638 (1966).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wagner, G. P. & Altenberg, L. Perspective: complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).

    Article 
    PubMed 

    Google Scholar
     

  • Olson, E. C. & Miller, R. L. Morphological Integration (University of Chicago Press, 1958).

  • Sanger, T. J., Mahler, D. L., Abzhanov, A. & Losos, J. B. Roles for modularity and constraint in the evolution of cranial diversity among Anolis lizards. Evolution 66, 1525–1542 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Klingenberg, C. P. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39, 115–132 (2008).

    Article 

    Google Scholar
     

  • Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: from development to deep time. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 369, 20130254 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rolian, C. Genes, development, and evolvability in primate evolution. Evol. Anthropol. 23, 93–104 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Goswami, A. et al. Attenuated evolution of mammals through the Cenozoic. Science 378, 377–383 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Losos, J. B. Convergence, adaptation and constraint. Evolution 65, 1827–1840 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Mahler, D. L., Weber, M. G., Wagner, C. E. & Ingram, T. Pattern and process in the comparative study of convergent evolution. Am. Nat. 190, S13–S28 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Stayton, C. T. What does convergent evolution mean? The interpretation of convergence and its implications in the search for limits to evolution. Interface Focus 5, 20150039 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolnick, D. I., Barrett, R. D. H., Oke, K. B., Rennison, D. J. & Stuart, Y. E. (Non)parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49, 303–330 (2018).

    Article 

    Google Scholar
     

  • Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article 

    Google Scholar
     

  • Werning, S. Osteohistological differences between marsupials and placental mammals reflect both growth rates and life history strategies. Integr. Comp. Biol. 53, E224 (2013).


    Google Scholar
     

  • Cignoni, P. et al. MeshLab: an open-source mesh processing tool. In Eurographics Italian chapter conference Vol. 2008, pp. 129–136 (2008).

  • Toledo, N., Muñoz, N. A. & Cassini, G. H. Ulna of extant xenarthrans: shape, size, and function. J. Mammal. Evol. 28, 35–45 (2021).

    Article 

    Google Scholar
     

  • de Oliveira, A. M. & Santos, C. M. D. Functional morphology and paleoecology of Pilosa (Xenarthra, Mammalia) based on a two-dimensional geometric morphometrics study of the humerus. J. Morphol. 279, 1455–1467 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bardua, C., Felice, R. N., Watanabe, A. & Fabre, A. C. A practical guide to sliding and surface semilandmarks in morphometric analyse. Integr. Org. Biol. 1, obz016 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goswami, A. et al. High-density morphometric analysis of shape and integration: the good, the bad, and the not-really-a-problem. Integr. Comp. Biol. 59, 669–683 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Botton-Divet, L., Cornette, R., Fabre, A.-C., Herrel, A. & Houssaye, A. Morphological analysis of long bones in semi-aquatic mustelids and their terrestrial relatives. Integr. Comp. Biol. 56, 1298–1309 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Lebrun, R. MorphoDig, an open-source 3D freeware dedicated to biology. In IPC5 The 5th International Palaeontological Congress(2018).

  • Gunz, P., Mitteroecker, P. & Bookstein, F. L. Semilandmarks in three dimensions. in Modern Morphometrics in Physical Anthropology (ed. Denis, S.) 73–98 (Springer, 2005).

  • Community, B. O. Blender—a 3D modelling and rendering package, Stichting Blender Foundation, Amsterdam. http://www.blender.org (2018).

  • R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).

  • Schlager S. Morpho and Rvcg – Shape Analysis in R. In Statistical Shape and Deformation Analysis 217–256 (eds. Zheng G., Li S., Szekely G.) (Academic Press, 2017).

  • Baken E., Collyer M., Kaliontzopoulou A., Adams D. geomorph v4.0 and gmShiny: enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol. Evol. 12, 2355–2363 (2021).

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amson, E. Overall bone structure as assessed by slice-by-slice profile. Evol. Biol. 46, 343–348 (2019).

    Article 

    Google Scholar
     

  • Alfieri, F., Botton-Divet, L., Amson, E. & Nyakatura, J. A. Data from: integrative approach uncovers new patterns of ecomorphological convergence in slow arboreal xenarthrans. Figshare https://doi.org/10.6084/m9.figshare.14988060.v7 (2021).

  • Doube, M. et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone 47, 1076–1079 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laurin, M. The evolution of body size, Cope’s rule and the origin of amniotes. Syst. Biol. 53, 594–622 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Sode, M., Burghardt, A. J., Nissenson, R. A. & Majumdar, S. Resolution dependence of the non-metric trabecular structure indices. Bone 42, 728–736 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Kivell, T. L., Skinner, M. M., Lazenby, R. & Hublin, J.-J. Methodological considerations for analyzing trabecular architecture: an example from the primate hand. J. Anat. 218, 209–225 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maddison, D. R. & Maddison, W. P. Mesquite: a modular system for evolutionary analysis. Version 3.70. https://www.mesquiteproject.org/ (2021).

  • Bargo, M. S., Toledo, N. & Vizcaíno, S. F. Paleobiology of the Santacrucian Sloths and Anteaters (Xenarthra, Pilosa). in Early Miocene Paleobiology in Patagonia. High Latitude Paleocommunities of the Santa Cruz Formation (eds Vizcaíno, S. F. et al.) 216–242 (Cambridge University Press, 2012).

  • Varela, L., Tambusso, P. S., McDonald, H. G. & Fariña, R. A. Phylogeny, macroevolutionary trends and historical biogeography of sloths: insights from a Bayesian morphological clock analysis. Syst. Biol. 68, 204–218 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Delsuc, F. et al. Ancient mitogenomes reveal the evolutionary history and biogeography of sloths. Curr. Biol. 29, 2031–2042.e6 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feijó, A. et al. Phylogeny and molecular species delimitation of long-nosed armadillos (Dasypus: Cingulata) supports morphology-based taxonomy. Zool. J. Linn. Soc. 186, 813–825 (2019).

    Article 

    Google Scholar
     

  • Casali, D. D. M., Dos Santos Júnior, J. E., Miranda, F. R., Santos, F. R. & Perini, F. A. Total-evidence phylogeny and divergence times of Vermilingua (Mammalia: Pilosa). Syst. Biodivers. 18, 216–227 (2020).

    Article 

    Google Scholar
     

  • Herrera, J. P. & Dávalos, L. M. Phylogeny and divergence times of lemurs inferred with recent and ancient fossils in the tree. Syst. Biol. 65, 772–791 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Baab, K. L., Perry, J. M. G., Rohlf, F. J. & Jungers, W. L. Phylogenetic, ecological, and allometric correlates of cranial shape in Malagasy lemuriforms. Evolution 68, 1450–1468 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Marciniak, S. et al. Evolutionary and phylogenetic insights from a nuclear genome sequence of the extinct, giant, “subfossil” koala lemur Megaladapis edwardsi. Proc. Natl. Acad. Sci. USA 118, e2022117118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoder, A. D., Irwin, J. A. & Payseur, B. A. Failure of the ILD to determine data combinability for slow loris phylogeny. Syst. Biol. 50, 408–424 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poux, C. & Douzery, E. J. P. Primate phylogeny, evolutionary rate variations, and divergence times: a contribution from the nuclear gene IRBP. Am. J. Phys. Anthropol. 124, 1–16 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinforma. 7, 88 (2006).

    Article 

    Google Scholar
     

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar
     

  • O’Higgins, P. & Jones, N. Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation. J. Anat. 193, 251–272 (1998).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mundry, R. Statistical issues and assumptions of phylogenetic generalized least squares. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology-Concepts and Practice (ed. Garamszegi, L. Z.) 131–153 (Springer, 2014).

  • Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: linear and nonlinear mixed effects models. R package version 3.1-147. https://rdrr.io/cran/nlme/ (2020).

  • Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alfieri, F., Botton-Divet, L., Wölfer, J., Nyakatura, J. A & Amson, E. Data from: A macroevolutionary common-garden experiment reveals differentially evolvable bone organization levels in slow arboreal mammals. Figshare. https://doi.org/10.6084/m9.figshare.22061207.v11 (2023).

  • [ad_2]

    Source link