A conceptual design of circular adaptive façade module for reuse – Scientific Reports

[ad_1]

  • United Nations, Cities—United Nations Sustainable Development. https://www.un.org/sustainabledevelopment/cities/ (Accessed 31 October 2023).

  • ÜrgeVorsatz, D. & Metz, B. Energy efficiency: How far does it get us in controlling climate change?. Energy Effic. 2, 87–94. https://doi.org/10.1007/s12053-009-9049-7 (2009).

    Article 

    Google Scholar
     

  • European Environment Agency, Climate-ADAPT 10 case studies – How Europe is adapting to climate change, 28, https://doi.org/10.2800/097442 (2018).

  • European Commission, Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency, https://rb.gy/lntlha (2018).

  • Egypt Electricity Holding Company (EEHC), Egypt Electricity Holding Company Annual Report,” 1–90, http://www.moee.gov.eg/test_new (2021).

  • Ministry of Environment & Arab Republic of Egypt, Egypt National Climate Change Strategy 2050, 57 (2022).

  • Kolarevic, B. & Parlac, V. Building dynamics: Exploring architecture of change. Build. Dyn. Explore. Archit. Change https://doi.org/10.4324/9781315763279 (2015).

    Article 

    Google Scholar
     

  • Worre Foged, I. & Barbotin, A. Thermo-Spatial Performances of Eight Responsive Envelopes: Simulation Studies Benchmarking Built Active Solar Shading Envelopes. Post Carbon Cities, September (2020).

  • Faragalla, A. M. A. & Asad, S. Biomimetic design for adaptive building façades: A paradigm shift towards environmentally conscious architecture. Energies 15(15), 0–21. https://doi.org/10.3390/en15155390 (2022).

    Article 

    Google Scholar
     

  • Ricci, A., Ponzio, C., Fabbri, K., Gaspari, J. & Naboni, E. Development of a self-sufficient dynamic façade within the context of climate change. Archit. Sci. Rev. 64(1–2), 87–97. https://doi.org/10.1080/00038628.2020.1713042 (2021).

    Article 

    Google Scholar
     

  • Fathy, F., Mansour, Y., Sabry, H., Refat, M. & Wagdy, A. Conceptual framework for daylighting and facade design in museums and exhibition spaces. Sol. Energy 204, 673–682. https://doi.org/10.1016/J.SOLENER.2020.05.014 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Metwally, E. A., Farid, A. A. & Ismail, M. R. Development of an IoT assessment method: An interdisciplinary framework for energy efficient buildings. Energy Build. 254, 111545 (2022).

    Article 

    Google Scholar
     

  • Parsaee, M., Demers, C. M., Hébert, M., Lalonde, J. F. & Potvin, A. Biophilic photobiological and energy-efficient design framework of adaptive building façades for Northern Canada. Indoor Built Environ. 30(5), 665–691. https://doi.org/10.1177/1420326X20903082 (2021).

    Article 

    Google Scholar
     

  • Powell, D., Hischier, I., Jayathissa, P., Svetozarevic, B. & Schlüter, A. A reflective adaptive solar façade for multi-building energy and comfort management. Energy Build. 177, 303–315. https://doi.org/10.1016/J.ENBUILD.2018.07.040 (2018).

    Article 

    Google Scholar
     

  • Correa, D. et al. 4D pine scale: Biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. https://doi.org/10.1098/rsta.2019.0445 (2020).

    Article 

    Google Scholar
     

  • Correa, D. et al. A climate-responsive prototype project based on the elastic and hygroscopic properties of wood. ACADIA 2013 Adapt. Archit. In Proc. 33rd Annu. Conf. Assoc. Comput. Aided Des. Archit., pp. 33–42 (2013).

  • Kim, H. & Clayton, M. J. A multi-objective optimization approach for climate-adaptive building envelope design using parametric behavior maps. Build. Environ. 185, 107292. https://doi.org/10.1016/J.BUILDENV.2020.107292 (2020).

    Article 

    Google Scholar
     

  • Wagdy, A. & Fathy, F. A parametric approach for achieving optimum daylighting performance through solar screens in desert climates. J. Build. Eng. 3, 155–170 (2015).

    Article 

    Google Scholar
     

  • Mahmoud, A. H. A. & Elghazi, Y. Parametric-based designs for kinetic facades to optimize daylight performance: Comparing rotation and translation kinetic motion for hexagonal facade patterns. SoEn 126, 111–127. https://doi.org/10.1016/J.SOLENER.2015.12.039 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Eltaweel, A. & Su, Y. Controlling venetian blinds based on parametric design; via implementing Grasshopper’s plugins: A case study of an office building in Cairo. Energy Build. 139, 31–43. https://doi.org/10.1016/J.ENBUILD.2016.12.075 (2017).

    Article 

    Google Scholar
     

  • Tokuç, A., Özkaban, F. F. & Çakır, Ö. A. Biomimetic facade applications for a more sustainable future. Interdiscip. Expans. Eng. Des. Power Biomimicry https://doi.org/10.5772/intechopen.73021 (2018).

    Article 

    Google Scholar
     

  • Cheng, T. et al. Bio-inspired motion mechanisms: Computational design and material programming of self-adjusting 4D-printed wearable systems. Adv. Sci. 8, 1–12. https://doi.org/10.1002/advs.202100411 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sgouropoulou, G. E. Possibilities of Applying Biodegradable Materials in Solid Building Envelopes in The Netherlands (Tu Delf library, 2013).


    Google Scholar
     

  • Abdelsabour, I. Fabrics as an inventive building material and their compatibility with flexible architecture. JES J. Eng. Sci. 48(1), 121–135. https://doi.org/10.21608/JESAUN.2020.135086 (2020).

    Article 

    Google Scholar
     

  • Karanouh, A. & Kerber, E. Innovations in dynamic architecture. J. Facade Des. Eng. 3(2), 185–221. https://doi.org/10.3233/FDE-150040 (2015).

    Article 

    Google Scholar
     

  • Aviation meets architecture, https://composites-united.com/en/aviation-meets-architecture-tailored-fibre-placement-makes-for-tailored-bio-composite-structures-for-architecture/ (Accessed 10 June 2023).

  • Media-TIC-Enric Ruiz Geli -ArchDaily. https://www.archdaily.com/49150/media-tic-enric-ruiz-geli?ad_medium=gallery (Accessed 16 June 2023).

  • IAAC, self-adaptive membrane utilizes kinetic joints responsive to solar radiation, https://rb.gy/bp6a4l (2015).

  • Angel Muñoz, P. I., Rizzuti C., krishna, K., parandhaman, A. Interactive Environments and Physical Computing- Adaptive Facade systems. IAAC (2020).

  • HABITAT 2020: Future Smart “Living” Architecture. https://inhabitat.com/habitat-2020-off-the-grid-future-abode/ (2015).

  • Gallo, P. & Romano, R. Adaptive box window, developed with innovative nanomaterial, for a sustainable architecture in the Mediterranean area. Energy Procedia 122, 883–888. https://doi.org/10.1016/j.egypro.2017.07.380 (2017).

    Article 

    Google Scholar
     

  • Yi, H. et al. 3D-printed attachable kinetic shading device with alternate actuation: Use of shape-memory alloy (SMA) for climate-adaptive responsive architecture. Autom. Constr. 114, 103151. https://doi.org/10.1016/J.AUTCON.2020.103151 (2020).

    Article 

    Google Scholar
     

  • Niazy, D., Elsabbagh, A. & Ismail, M. R. Three-Dimensional Printing of Sustainable Polymer for Motion Programming Applications 1–10 (Springer, 2022).


    Google Scholar
     

  • Barozzi, M., Lienhard, J., Zanelli, A. & Monticelli, C. The sustainability of adaptive envelopes: Developments of kinetic architecture. Procedia Eng. 155, 275–284. https://doi.org/10.1016/J.PROENG.2016.08.029 (2016).

    Article 

    Google Scholar
     

  • Capeluto, G. Adaptability in envelope energy retrofits through addition of intelligence features. Archit. Sci. Rev. 62(3), 216–229. https://doi.org/10.1080/00038628.2019.1574707 (2019).

    Article 

    Google Scholar
     

  • Aguerre, A. et al. Façade leasing: Drivers and barriers to the delivery of integrated Façades-as-a-service. Real Estate Res. Q. 17(3), 11–22 (2018).


    Google Scholar
     

  • Ganesh, G. A., Sinha, S. L., Verma, T. N. & Dewangan, S. K. Investigation of indoor environment quality and factors affecting human comfort: A critical review. Build. Environ. 204, 108146. https://doi.org/10.1016/J.BUILDENV.2021.108146 (2021).

    Article 

    Google Scholar
     

  • Kang, J. N. et al. Energy systems for climate change mitigation: A systematic review. Appl. Energy 263, 114602. https://doi.org/10.1016/J.APENERGY.2020.114602 (2020).

    Article 

    Google Scholar
     

  • Miranda, R., Fabbrocino, F., Sicignano, E., Skelton, R. E. & Fraternali, F. Innovative structures for dynamic solar façade. Proc. 6th Int. Conf. Comput. Methods Struct. Dyn. Earthq. Eng. https://doi.org/10.7712/120117.5700.17756 (2017).

    Article 

    Google Scholar
     

  • Nagy, Z. et al. The adaptive solar facade: From concept to prototypes. Front. Archit. Res. 5(2), 143–156. https://doi.org/10.1016/j.foar.2016.03.002 (2016).

    Article 

    Google Scholar
     

  • Lüling, C. et al. Advanced 3D textile applications for the building envelope”. Appl. Compos. Mater. 29, 343–356. https://doi.org/10.1007/s10443-021-09941-8 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Cui, Z., Zhang, S., Viscuso, S. & Zanelli, A. Weaving octopus: An assembly–disassembly-adaptable customized textile hybrid prototype. Buildings https://doi.org/10.3390/buildings13102413 (2023).

    Article 

    Google Scholar
     

  • Heliotropic Moire Patterns – The Bartlett School of Architecture – UCL – University College London. https://www.ucl.ac.uk/bartlett/architecture/heliotropic-moire-patterns (Accessed 1 November 2023).

  • Bulgarelli, A. et al. A low-cost open-source 3D-printable dexterous anthropomorphic robotic hand with a parallel spherical joint wrist for sign languages reproduction. Int. J. Adv. Robot. Syst. https://doi.org/10.5772/64113 (2016).

    Article 

    Google Scholar
     

  • Palpacelli, M. C., Carbonari, L. & Palmieri, G. Details on the design of a lockable spherical joint for robotic applications. J. Intell. Robot. Syst. Theory Appl. 81(2), 169–179. https://doi.org/10.1007/s10846-015-0230-2 (2016).

    Article 

    Google Scholar
     

  • Cretescu, N., Neagoe, M. & Saulescu, R. Dynamic analysis of a delta parallel robot with flexible links and joint clearances. Appl. Sci. https://doi.org/10.3390/app13116693 (2023).

    Article 

    Google Scholar
     

  • Chen, X. & Jia, Y. Dynamic modeling, and responses investigation of spatial parallel robot considering lubricated spherical joint. Eur. J. Mech. A/Solids 92, 104458. https://doi.org/10.1016/j.euromechsol.2021.104458 (2022).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Hofer, M. & Andrea, R. D. Design, fabrication, modeling, and control of a fabric-based spherical robotic arm. Mechatronics 68, 102369. https://doi.org/10.1016/j.mechatronics.2020.102369 (2020).

    Article 

    Google Scholar
     

  • Mu, Z. et al. Two types of snake-like robots for complex environment exploration: Design, development, and experiment. Adv. Mech. Eng. 9(9), 1–15. https://doi.org/10.1177/1687814017721854 (2017).

    Article 

    Google Scholar
     

  • Mackey, C. & Roudsari, M. S. Humanizing Digital Reality Design Modelling (Springer, 2017). https://doi.org/10.1007/978-981-10-6611-5.

    Book 

    Google Scholar
     

  • Darwish, E., Mansour, Y., El-Mously, H. & Abdelrahman, A. A. Development of sustainable building components utilizing date palm midribs for light wide-span multi-purpose structures for rural communities in Egypt. J. Build. Eng. https://doi.org/10.1016/j.jobe.2019.100770 (2019).

    Article 

    Google Scholar
     

  • Dixit, M. K., Fernández-Solís, J. L., Lavy, S. & Culp, C. H. Identification of parameters for embodied energy measurement: A literature review. Energy Build. 42(8), 1238–1247. https://doi.org/10.1016/j.enbuild.2010.02.016 (2010).

    Article 

    Google Scholar
     

  • Fnais, A. et al. The application of life cycle assessment in buildings: Challenges, and directions for future research. Int. J. Life Cycle Assess. 27, 627–654. https://doi.org/10.1007/s11367-022-02058-5 (2022).

    Article 

    Google Scholar
     

  • Neugebauer, S., Martinez-Blanco, J., Scheumann, R. & Finkbeiner, M. Enhancing the practical implementation of life cycle sustainability assessment- proposal of a Tiered approach. J. Clean. Prod. 102, 165–176. https://doi.org/10.1016/J.JCLEPRO.2015.04.053 (2015).

    Article 

    Google Scholar
     

  • [ad_2]

    Source link