[ad_1]
United Nations, Cities—United Nations Sustainable Development. https://www.un.org/sustainabledevelopment/cities/ (Accessed 31 October 2023).
ÜrgeVorsatz, D. & Metz, B. Energy efficiency: How far does it get us in controlling climate change?. Energy Effic. 2, 87–94. https://doi.org/10.1007/s12053-009-9049-7 (2009).
European Environment Agency, Climate-ADAPT 10 case studies – How Europe is adapting to climate change, 28, https://doi.org/10.2800/097442 (2018).
European Commission, Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency, https://rb.gy/lntlha (2018).
Egypt Electricity Holding Company (EEHC), Egypt Electricity Holding Company Annual Report,” 1–90, http://www.moee.gov.eg/test_new (2021).
Ministry of Environment & Arab Republic of Egypt, Egypt National Climate Change Strategy 2050, 57 (2022).
Kolarevic, B. & Parlac, V. Building dynamics: Exploring architecture of change. Build. Dyn. Explore. Archit. Change https://doi.org/10.4324/9781315763279 (2015).
Worre Foged, I. & Barbotin, A. Thermo-Spatial Performances of Eight Responsive Envelopes: Simulation Studies Benchmarking Built Active Solar Shading Envelopes. Post Carbon Cities, September (2020).
Faragalla, A. M. A. & Asad, S. Biomimetic design for adaptive building façades: A paradigm shift towards environmentally conscious architecture. Energies 15(15), 0–21. https://doi.org/10.3390/en15155390 (2022).
Ricci, A., Ponzio, C., Fabbri, K., Gaspari, J. & Naboni, E. Development of a self-sufficient dynamic façade within the context of climate change. Archit. Sci. Rev. 64(1–2), 87–97. https://doi.org/10.1080/00038628.2020.1713042 (2021).
Fathy, F., Mansour, Y., Sabry, H., Refat, M. & Wagdy, A. Conceptual framework for daylighting and facade design in museums and exhibition spaces. Sol. Energy 204, 673–682. https://doi.org/10.1016/J.SOLENER.2020.05.014 (2020).
Metwally, E. A., Farid, A. A. & Ismail, M. R. Development of an IoT assessment method: An interdisciplinary framework for energy efficient buildings. Energy Build. 254, 111545 (2022).
Parsaee, M., Demers, C. M., Hébert, M., Lalonde, J. F. & Potvin, A. Biophilic photobiological and energy-efficient design framework of adaptive building façades for Northern Canada. Indoor Built Environ. 30(5), 665–691. https://doi.org/10.1177/1420326X20903082 (2021).
Powell, D., Hischier, I., Jayathissa, P., Svetozarevic, B. & Schlüter, A. A reflective adaptive solar façade for multi-building energy and comfort management. Energy Build. 177, 303–315. https://doi.org/10.1016/J.ENBUILD.2018.07.040 (2018).
Correa, D. et al. 4D pine scale: Biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. https://doi.org/10.1098/rsta.2019.0445 (2020).
Correa, D. et al. A climate-responsive prototype project based on the elastic and hygroscopic properties of wood. ACADIA 2013 Adapt. Archit. In Proc. 33rd Annu. Conf. Assoc. Comput. Aided Des. Archit., pp. 33–42 (2013).
Kim, H. & Clayton, M. J. A multi-objective optimization approach for climate-adaptive building envelope design using parametric behavior maps. Build. Environ. 185, 107292. https://doi.org/10.1016/J.BUILDENV.2020.107292 (2020).
Wagdy, A. & Fathy, F. A parametric approach for achieving optimum daylighting performance through solar screens in desert climates. J. Build. Eng. 3, 155–170 (2015).
Mahmoud, A. H. A. & Elghazi, Y. Parametric-based designs for kinetic facades to optimize daylight performance: Comparing rotation and translation kinetic motion for hexagonal facade patterns. SoEn 126, 111–127. https://doi.org/10.1016/J.SOLENER.2015.12.039 (2016).
Eltaweel, A. & Su, Y. Controlling venetian blinds based on parametric design; via implementing Grasshopper’s plugins: A case study of an office building in Cairo. Energy Build. 139, 31–43. https://doi.org/10.1016/J.ENBUILD.2016.12.075 (2017).
Tokuç, A., Özkaban, F. F. & Çakır, Ö. A. Biomimetic facade applications for a more sustainable future. Interdiscip. Expans. Eng. Des. Power Biomimicry https://doi.org/10.5772/intechopen.73021 (2018).
Cheng, T. et al. Bio-inspired motion mechanisms: Computational design and material programming of self-adjusting 4D-printed wearable systems. Adv. Sci. 8, 1–12. https://doi.org/10.1002/advs.202100411 (2021).
Sgouropoulou, G. E. Possibilities of Applying Biodegradable Materials in Solid Building Envelopes in The Netherlands (Tu Delf library, 2013).
Abdelsabour, I. Fabrics as an inventive building material and their compatibility with flexible architecture. JES J. Eng. Sci. 48(1), 121–135. https://doi.org/10.21608/JESAUN.2020.135086 (2020).
Karanouh, A. & Kerber, E. Innovations in dynamic architecture. J. Facade Des. Eng. 3(2), 185–221. https://doi.org/10.3233/FDE-150040 (2015).
Aviation meets architecture, https://composites-united.com/en/aviation-meets-architecture-tailored-fibre-placement-makes-for-tailored-bio-composite-structures-for-architecture/ (Accessed 10 June 2023).
Media-TIC-Enric Ruiz Geli -ArchDaily. https://www.archdaily.com/49150/media-tic-enric-ruiz-geli?ad_medium=gallery (Accessed 16 June 2023).
IAAC, self-adaptive membrane utilizes kinetic joints responsive to solar radiation, https://rb.gy/bp6a4l (2015).
Angel Muñoz, P. I., Rizzuti C., krishna, K., parandhaman, A. Interactive Environments and Physical Computing- Adaptive Facade systems. IAAC (2020).
HABITAT 2020: Future Smart “Living” Architecture. https://inhabitat.com/habitat-2020-off-the-grid-future-abode/ (2015).
Gallo, P. & Romano, R. Adaptive box window, developed with innovative nanomaterial, for a sustainable architecture in the Mediterranean area. Energy Procedia 122, 883–888. https://doi.org/10.1016/j.egypro.2017.07.380 (2017).
Yi, H. et al. 3D-printed attachable kinetic shading device with alternate actuation: Use of shape-memory alloy (SMA) for climate-adaptive responsive architecture. Autom. Constr. 114, 103151. https://doi.org/10.1016/J.AUTCON.2020.103151 (2020).
Niazy, D., Elsabbagh, A. & Ismail, M. R. Three-Dimensional Printing of Sustainable Polymer for Motion Programming Applications 1–10 (Springer, 2022).
Barozzi, M., Lienhard, J., Zanelli, A. & Monticelli, C. The sustainability of adaptive envelopes: Developments of kinetic architecture. Procedia Eng. 155, 275–284. https://doi.org/10.1016/J.PROENG.2016.08.029 (2016).
Capeluto, G. Adaptability in envelope energy retrofits through addition of intelligence features. Archit. Sci. Rev. 62(3), 216–229. https://doi.org/10.1080/00038628.2019.1574707 (2019).
Aguerre, A. et al. Façade leasing: Drivers and barriers to the delivery of integrated Façades-as-a-service. Real Estate Res. Q. 17(3), 11–22 (2018).
Ganesh, G. A., Sinha, S. L., Verma, T. N. & Dewangan, S. K. Investigation of indoor environment quality and factors affecting human comfort: A critical review. Build. Environ. 204, 108146. https://doi.org/10.1016/J.BUILDENV.2021.108146 (2021).
Kang, J. N. et al. Energy systems for climate change mitigation: A systematic review. Appl. Energy 263, 114602. https://doi.org/10.1016/J.APENERGY.2020.114602 (2020).
Miranda, R., Fabbrocino, F., Sicignano, E., Skelton, R. E. & Fraternali, F. Innovative structures for dynamic solar façade. Proc. 6th Int. Conf. Comput. Methods Struct. Dyn. Earthq. Eng. https://doi.org/10.7712/120117.5700.17756 (2017).
Nagy, Z. et al. The adaptive solar facade: From concept to prototypes. Front. Archit. Res. 5(2), 143–156. https://doi.org/10.1016/j.foar.2016.03.002 (2016).
Lüling, C. et al. Advanced 3D textile applications for the building envelope”. Appl. Compos. Mater. 29, 343–356. https://doi.org/10.1007/s10443-021-09941-8 (2022).
Cui, Z., Zhang, S., Viscuso, S. & Zanelli, A. Weaving octopus: An assembly–disassembly-adaptable customized textile hybrid prototype. Buildings https://doi.org/10.3390/buildings13102413 (2023).
Heliotropic Moire Patterns – The Bartlett School of Architecture – UCL – University College London. https://www.ucl.ac.uk/bartlett/architecture/heliotropic-moire-patterns (Accessed 1 November 2023).
Bulgarelli, A. et al. A low-cost open-source 3D-printable dexterous anthropomorphic robotic hand with a parallel spherical joint wrist for sign languages reproduction. Int. J. Adv. Robot. Syst. https://doi.org/10.5772/64113 (2016).
Palpacelli, M. C., Carbonari, L. & Palmieri, G. Details on the design of a lockable spherical joint for robotic applications. J. Intell. Robot. Syst. Theory Appl. 81(2), 169–179. https://doi.org/10.1007/s10846-015-0230-2 (2016).
Cretescu, N., Neagoe, M. & Saulescu, R. Dynamic analysis of a delta parallel robot with flexible links and joint clearances. Appl. Sci. https://doi.org/10.3390/app13116693 (2023).
Chen, X. & Jia, Y. Dynamic modeling, and responses investigation of spatial parallel robot considering lubricated spherical joint. Eur. J. Mech. A/Solids 92, 104458. https://doi.org/10.1016/j.euromechsol.2021.104458 (2022).
Hofer, M. & Andrea, R. D. Design, fabrication, modeling, and control of a fabric-based spherical robotic arm. Mechatronics 68, 102369. https://doi.org/10.1016/j.mechatronics.2020.102369 (2020).
Mu, Z. et al. Two types of snake-like robots for complex environment exploration: Design, development, and experiment. Adv. Mech. Eng. 9(9), 1–15. https://doi.org/10.1177/1687814017721854 (2017).
Mackey, C. & Roudsari, M. S. Humanizing Digital Reality Design Modelling (Springer, 2017). https://doi.org/10.1007/978-981-10-6611-5.
Darwish, E., Mansour, Y., El-Mously, H. & Abdelrahman, A. A. Development of sustainable building components utilizing date palm midribs for light wide-span multi-purpose structures for rural communities in Egypt. J. Build. Eng. https://doi.org/10.1016/j.jobe.2019.100770 (2019).
Dixit, M. K., Fernández-Solís, J. L., Lavy, S. & Culp, C. H. Identification of parameters for embodied energy measurement: A literature review. Energy Build. 42(8), 1238–1247. https://doi.org/10.1016/j.enbuild.2010.02.016 (2010).
Fnais, A. et al. The application of life cycle assessment in buildings: Challenges, and directions for future research. Int. J. Life Cycle Assess. 27, 627–654. https://doi.org/10.1007/s11367-022-02058-5 (2022).
Neugebauer, S., Martinez-Blanco, J., Scheumann, R. & Finkbeiner, M. Enhancing the practical implementation of life cycle sustainability assessment- proposal of a Tiered approach. J. Clean. Prod. 102, 165–176. https://doi.org/10.1016/J.JCLEPRO.2015.04.053 (2015).
[ad_2]
Source link