[ad_1]
Gooday, G. W. Aggressive and defensive roles for chitinases. EXS 87, 157–169 (1999).
Zhang, R., Zhou, J., Song, Z. & Huang, Z. Enzymatic properties of β-N-acetylglucosaminidases. Appl. Microbiol. Biotechnol. 102, 93–103 (2018).
Bonin, M., Sreekumar, S., Cord-Landwehr, S. & Moerschbacher, B. M. Preparation of defined chitosan oligosaccharides using chitin deacetylases. Int. J. Mol. Sci. 21, 7835 (2020).
Loose, J. S., Forsberg, Z., Fraaije, M. W., Eijsink, V. G. & Vaaje-Kolstad, G. A rapid quantitative activity assay shows that the Vibrio cholerae colonization factor GbpA is an active lytic polysaccharide monooxygenase. FEBS Lett. 588, 3435–3440 (2014).
Muthukrishnan, S., Merzendorfer, H., Arakane, Y. & Yang, Q. Chitin organizing and modifying enzymes and proteins involved in remodeling of the insect cuticle. Adv. Exp. Med. Biol. 1142, 83–114 (2019).
Nazari, B. et al. Chitin-induced gene expression in secondary metabolic pathways of Streptomyces coelicolor A3(2) grown in soil. Appl. Environ. Microbiol. 79, 707–713 (2013).
Zhang, X., Lin, H., Wang, X. & Austin, B. Significance of Vibrio species in the marine organic carbon cycle: A review. Sci. China Earth Sci. 61, 1357–1368 (2018).
Bassler, B. L., Yu, C., Lee, Y. C. & Roseman, S. Chitin utilization by marine bacteria: Degradation and catabolism of chitin oligosaccharides by Vibrio furnissii. J. Biol. Chem. 266, 24276–24286 (1991).
Suginta, W., Robertson, P. A. W., Austin, B., Fry, S. C. & Fothergill-Gilmore, L. A. Chitinases from Vibrio: Activity screening and purification of chiA from Vibrio carchariae. J. Appl. Microbiol. 89, 76–84 (2000).
Suginta, W. et al. An endochitinase A from Vibrio carchariae: Cloning, expression, mass and sequence analyses, and chitin hydrolysis. Arch. Biochem. Biophys. 424, 171–180 (2004).
Keyhani, N. O., Li, X. B. & Roseman, S. Chitin catabolism in the marine bacterium Vibrio furnissii. Identification and molecular cloning of a chitoporin. J. Biol. Chem. 275, 33068–33076 (2000).
Suginta, W. et al. Molecular uptake of chitooligosaccharides through chitoporin from the marine bacterium Vibrio harveyi. PLoS ONE. 8, e55126 (2013).
Suginta, W., Chumjan, W., Mahendran, K. R., Schulte, A. & Winterhalter, M. Chitoporin from Vibrio harveyi, a channel with exceptional sugar specificity. J. Biol. Chem. 288, 11038–11046 (2013).
Aunkham, A. et al. Structural basis for chitin acquisition by marine Vibrio species. Nat. Commun. 9, 220 (2018).
Keyhani, N. O. & Roseman, S. The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Molecular cloning, isolation, and characterization of a periplasmic chitodextrinase. J. Biol. Chem. 271, 33414–33424 (1996).
Keyhani, N. O. & Roseman, S. The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Molecular cloning, isolation, and characterization of a periplasmic b-N-acetylglucosaminidase. J. Biol. Chem. 27, 33425–33432 (1996).
Suginta, W., Chuenark, D., Mizuhara, M. & Fukamizo, T. Novel β-N-acetylglucosaminidases from Vibrio harveyi 650: Cloning, expression, enzymatic properties, and subsite identification. BMC Biochem. 11, 40 (2010).
Keyhani, N. O., Wang, L. X., Lee, Y. C. & Roseman, S. The chitin catabolic cascade in the marine bacterium Vibrio furnissii. Characterization of an N, N’-diacetyl chitobiose transport system. J. Biol. Chem. 271, 33409–33413 (1996).
Chandravanshi, M., Tripathi, S. K. & Kanaujia, S. P. An updated classification and mechanistic insights into ligand binding of the substrate-binding proteins. FEBS Lett. 595, 2395–2409 (2021).
Ortega, Á., Matilla, M. A. & Krell, T. The repertoire of solute-binding proteins of model bacteria reveals large differences in number, type, and ligand range. Microbiol. Spectr. 10, e0205422 (2022).
Li, X. & Roseman, S. The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. Proc. Natl. Acad. Sci. USA. 101, 627–631 (2004).
Klancher, C. A., Yamamoto, S., Dalia, T. N. & Dalia, A. B. ChiS is a noncanonical DNA-binding hybrid sensor kinase that directly regulates the chitin utilization program in Vibrio cholerae. Proc. Natl. Acad. Sci. USA. 117, 20180–20189 (2020).
Scheepers, G. H., Lycklama, J. A. & Poolman, B. An updated structural classification of substrate-binding proteins. FEBS Lett. 590, 4393–4401 (2016).
Fukamizo, T., Kitaoku, Y. & Suginta, W. Periplasmic solute-binding proteins: Structure classification and chitooligosaccharide recognition. Int. J. Biol. Macromol. 128, 985–993 (2019).
Shears, P. Cholera. Ann. Trop. Med. Parasitol. 88, 109–122 (1994).
Austin, B. & Zhang, X. H. Vibrio harveyi: A significant pathogen of marine vertebrates and invertebrates. Lett. Appl. Microbiol. 43, 119–214 (2006).
Chekan, J. R. et al. Structural and biochemical basis for mannan utilization by Caldanaerobius polysaccharolyticus strain ATCC BAA-17. J. Biol. Chem. 289, 34965–34977 (2014).
Cuneo, M. J., Beese, L. S. & Hellinga, H. W. Structural analysis of semi-specific oligosaccharide recognition by a cellulose-binding protein of Thermotoga maritima reveals adaptations for functional diversification of the oligopeptide periplasmic binding protein fold. J. Biol. Chem. 284, 33217–33223 (2009).
Suginta, W. et al. Structure and function of a novel periplasmic chitooligosaccharide-binding protein from marine Vibrio bacteria. J. Biol. Chem. 293, 5150–5159 (2018).
Kitaoku, Y. et al. A structural model for (GlcNAc)2 translocation via a periplasmic chitooligosaccharide-binding protein from marine Vibrio bacteria. J. Biol. Chem. 297, 101071 (2021).
Chaudhuri, B. N., Ko, J., Park, C., Jones, T. A. & Mowbray, S. L. Structure of D-allose binding protein from Escherichia coli bound to D-allose at 1.8 A resolution. J. Mol. Biol. 286, 1519–1531 (1999).
Borrok, M. J., Kiessling, L. L. & Forest, K. T. Conformational changes of glucose/galactose-binding protein illuminated by open, unliganded, and ultra-high-resolution ligand-bound structures. Protein Sci. 16, 1032–1041 (2007).
Anamizu, K. et al. Substrate size-dependent conformational changes of bacterial pectin-binding protein crucial for chemotaxis and assimilation. Sci. Rep. 12, 12653 (2022).
Pace, C. N. & McGrath, T. Substrate stabilization of lysozyme to thermal and guanidine hydrochloride denaturation. J. Biol. Chem. 255, 3862–3865 (1980).
Zolotnitsky, G. et al. Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry. Proc. Natl. Acad. Sci. USA. 101, 11275–11280 (2004).
Fraczkiewicz, R. & Braun, W. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J. Comput. Chem. 19, 319–333 (1998).
Rupley, J. A. The hydrolysis of chitin by concentrated hydrochloric acid, and the preparation of low-molecular weight substrates for lysozyme. Biochim. Biophys. Acta 83, 245–255 (1964).
Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).
Pace, C. N., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423 (1995).
Honda, Y., Fukamizo, T., Boucher, I. & Brzezinski, R. Substrate binding to the inactive mutants of Streptomyces sp. N174 chitosanase: indirect evaluation from the thermal unfolding experiments. FEBS Lett. 411, 346–350 (1997).
Turnbull, W. B. & Daranas, A. H. On the value of c: Can low affinity systems be studied by isothermal titration calorimetry?. J. Am. Chem. Soc. 125, 14859–14866 (2003).
Ohnuma, T. et al. Chitin oligosaccharide binding to a family GH19 chitinase from the moss Bryum coronatum. FEBS J. 278, 3991–4001 (2011).
Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D. 68, 352–367 (2012).
Emsley, P. & Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D. 60, 2126–2132 (2004).
Williams, C. J. et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).
van Der Spoel, D. et al. GROMACS: Fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).
Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78, 1950–1958 (2010).
Sousa Da Silva, A. W. & Vrancen, W. F. ACPYPE: AnteChamber PYthon Parser interfacE. BMC Res. Not. 5, 367 (2012).
Jakalian, A., Jack, D. B. & Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II Parameterization and validation. J. Comput. Chem. 23, 1623–1641 (2002).
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
Berendsen, H. J. C., Postma, J. P. M., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).
Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
Amadei, A., Linssen, A. B. M. & Berendsen, H. J. C. Essential dynamics of proteins. Proteins. 17, 412–425 (1993).
Bakan, A., Meireles, L. M. & Bahar, I. ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics 27, 1575–1577 (2011).
Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
[ad_2]
Source link